Расчетное сопротивление осевому растяжению бетона
Расчетное и нормативное сопротивление бетона
Любое изделие из бетона должно выдерживать существенные нагрузки и при этом не поддаваться разрушительному воздействию внешних факторов. Параметры конструкций, при создании которых используется бетон, определяются еще во время проектирования. Перед началом проведения работ специалисты устанавливают расчетное сопротивление бетона.
Строители утверждают, что бетонные конструкции делаются из неоднородного стройматериала. Прочность нескольких образцов, при изготовлении которых использовалась одна и та же смесь, может быть совершенно разной. Именно поэтому перед специалистами встает вопрос определения прочности при помощи расчетных данных. За счет этих значений определяется сопротивление бетона сжатию. Что собой представляют расчетные показатели, и каким образом можно их определить? Какие дополнительные параметры и характеристики важно учитывать при проведении строительных работ?
Что такое расчетное сопротивление?
Специалисты получают показатели сопротивления строительного материала, разделяя нормативные сопротивления на коэффициенты. При определении прочности деталей конструкций к расчетному сопротивлению некоторых бетонных растворов иногда уменьшают либо увеличивают за счет умножения на определенные коэффициенты, учитывающие ряд факторов: многократные нагрузки, длительность воздействия нагрузок, способ изготовления изделия, его размеры и пр.
Вернуться к оглавлениюКак производить расчеты?
Каким образом нужно производить расчеты прочности конструкции, например, на ее сжатие? С этой целью строители используют специальные расчетные показатели. Для обеспечения достаточной устойчивости бетонных изделий при проведении расчетов, пользуются параметрами прочности стройматериала, которые чаще всего ниже параметров самих конструкций. Такие значения именуют расчетными. Они зависят непосредственно от нормативных (фактических) значений.
Вернуться к оглавлениюНормативные показатели
Несколько десятилетий тому назад основным показателем прочности бетонных конструкций была их марка. При помощи данного параметра обозначают среднюю устойчивость стройматериала на сжатие. Однако после появления новых Строительных норм и правил возникли и классы прочности изделий на их сжатие.
Класс — нормативное сопротивление стройматериала осевому сжатию кубов, эталонные размеры которых составляют 15 на 15 на 15 сантиметров. Стоит отметить, что пользоваться средними расчетными показателями прочности рискованно, поскольку существует вероятность, что в одном из сечений конструкции этот параметр может оказаться ниже. Вместе с тем выбирать наименьший показатель накладнее, ведь это неоправданно увеличит сечение изделия.
Главным параметром долговечности в бетоне считается класс. В то же время помимо сжатия, значение придается и осевому растяжению. Растяжение учитывается при проведении расчетов. Таким образом, устойчивость к этому показателю (если показатель не может контролироваться) строители определяют по классу B. Для этого существует специальная таблица, в которой указаны необходимые значения с сопротивлением. В таблице указан класс и устойчивость изделий к растяжению.
Вернуться к оглавлениюХарактеристики расчетного значения
Чтобы сделать надежные и долговечные конструкции, рассчитывают значения с запасом. Для получения этого значения строители прибегают к удельным сопротивлениям изделий: они разделяют их на коэффициент. Сопротивление стройматериала растяжению либо сжатию вычисляют при помощи формулы, которая выглядит следующим образом: R = Rn /g (g – коэффициент прочности). Чаще всего этот параметр равняется одному. От однородности материала зависит величина коэффициента. При этом выполнять соответствующие расчеты необязательно, поскольку получить необходимые параметры можно при помощи таблицы.
Вернуться к оглавлениюДругие характеристики
Помимо вышеуказанных параметров для выполнения определенных расчетов, понадобится ряд дополнительных характеристик:
- Определение удельного электрического сопротивления бетонного раствора может понадобиться, если вы решили самостоятельно осуществить обогрев смеси при помощи электродов. И чем больше показатель, тем сильнее будет нагреваться цементный раствор.
- Влагопроницаемость смесей позволяет определить самое сильное давление жидкости, которому способен противостоять стройматериал. Иными словами, это значение показывает, может ли влага проникнуть сквозь бетон. Водонепроницаемыми марками считаются с W2 по W20. При этом цифры указывают на давление воды, которое способна выдержать конструкция.
- Воздухонепроницаемость бетонного состава будет зависеть от прочности изделия. Согласно государственному стандарту, сопротивление бетона проникновению воздуха составляет 3-130 с/см3.
- Морозоустойчивость позволяет конструкциям из бетона выдерживать многократное замерзание, оттаивание с сохранением свойств. На рынке строительных материалов представлены марки F50-F1000 (цифры означают число циклов, которые выдерживает строительный материал). Как показывает практика, в среднем морозостойкость изделий равна показателю F200.
- Теплопроводимость – важная характеристика изделий, от которой будет зависеть плотность строения. Материалы, содержащие больше пор, обладают меньшей теплопроводностью, поскольку воздух, который их заполняет, является прекрасным теплоизолятором. Лучше всего теплоизоляцию обеспечивают газоблоки или пеноблоки, в структуре которых есть множество пор.
Заключение
Прочность изделий способна отличаться в зависимости от компонентов, входящих в состав материала и их пропорций. Также это объясняется тем, что стройматериал представляет собой неоднородную смесь. Вне зависимости от способа перемешивания бетонного раствора, невозможно равномерно распределить компоненты. Поэтому при проведении работ необходимо учитывать расчетное сопротивление.
Этот параметр является важным для проектирования несущих стен и других конструкций. Расчеты значений просты: они сводятся к делению нормативных значений на определенные коэффициенты.
kladembeton.ru
Сопротивление бетона
СП 63.13330.2012
6.1.11 Расчетные значения сопротивления бетона осевому сжатию Rb и осевому растяжению Rbt определяют по формулам:
Значения коэффициента надежности по бетону при сжатии γb принимают равными:
для расчета по предельным состояниям первой группы:
1,3 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;
1,5 — для ячеистого бетона;
для расчета по предельным состояниям второй группы: 1,0.
Значения коэффициента надежности по бетону при растяжении γbt принимают равными:
для расчета по предельным состояниям первой группы при назначении класса бетона по прочности на сжатие:
1,5 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;
2,3 — для ячеистого бетона;
для расчета по предельным состояниям первой группы при назначении класса бетона по прочности на растяжение:
1,3 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;
для расчета по предельным состояниям второй группы: 1,0.
Расчетные значения сопротивления бетона Rb, Rbt, Rb,ser, Rbt,ser (с округлением) в зависимости от класса бетона по прочности на сжатие и осевое растяжение приведены: для предельных состояний первой группы — в таблицах 6.8, 6.9, второй группы — в таблице 6.7.
Таблица 6.7
Вид | Бетон | Нормативные сопротивления бетона Rb,n, Rbt,n, МПа, и расчетные сопротивления бетона для предельных состояний второй группы Rb,ser и Rbt,ser, МПа, при классе бетона по прочности на сжатие | |||||||||||||||||||||
В1,5 | В2 | В2,5 | В3,5 | В5 | В7,5 | В10 | В12,5 | В15 | В20 | В25 | В30 | В35 | В40 | В45 | В50 | В55 | В60 | В70 | В80 | В90 | В100 | ||
Сжатие осевое (призменная прочность) Rb,n, Rb,ser | Тяжелый, мелкозернистый и напрягающий | — | — | — | 2,7 | 3,5 | 5,5 | 7,5 | 9,5 | 11 | 15 | 18,5 | 22 | 25,5 | 29 | 32 | 36 | 39,5 | 43 | 50 | 57 | 64 | 71 |
Легкий | — | — | 1,9 | 2,7 | 3,5 | 5,5 | 7,5 | 9,5 | 11 | 15 | 18,5 | 22 | 25,5 | 29 | — | — | — | — | — | — | — | — | |
Ячеистый | 1,4 | 1,9 | 2,4 | 3,3 | 4,6 | 6,9 | 9,0 | 10,5 | 11,5 | — | — | — | — | — | — | — | — | — | — | — | — | — | |
Растяжение осевое Rbt,n и Rbt,ser | Тяжелый, мелкозернистый и напрягающий | — | — | — | 0,39 | 0,55 | 0,70 | 0,85 | 1,00 | 1,10 | 1,35 | 1,55 | 1,75 | 1,95 | 2,10 | 2,25 | 2,45 | 2,60 | 2,75 | 3,00 | 3,30 | 3,60 | 3,80 |
Легкий | — | — | 0,29 | 0,39 | 0,55 | 0,70 | 0,85 | 1,00 | 1,10 | 1,35 | 1,55 | 1,75 | 1,95 | 2,10 | — | — | — | — | — | — | — | — | |
Ячеистый | 0,22 | 0,26 | 0,31 | 0,41 | 0,55 | 0,63 | 0,89 | 1,00 | 1,05 | — | — | — | — | — | — | — | — | — | — | — | — | — | |
Примечания 1 Значения сопротивлений приведены для ячеистого бетона средней влажностью 10 %. 2 Для мелкозернистого бетона на песке с модулем крупности 2,0 и менее, а также для легкого бетона на мелком пористом заполнителе значения расчетных сопротивлений Rbt,n, Rbt,ser следует принимать с умножением на коэффициент 0,8. 3 Для поризованного бетона, а также для керамзитоперлитобетона на вспученном перлитовом песке значения расчетных сопротивлений Rbt,n, Rbt,ser следует принимать как для легкого бетона с умножением на коэффициент 0,7. 4 Для напрягающего бетона значения Rbt,n, Rbt,ser следует принимать с умножением на коэффициент 1,2. |
Таблица 6.8
Вид | Бетон | Расчетные сопротивления бетона Rb, Rbt, МПа, для предельных состояний первой группы при классе бетона по прочности на сжатие | |||||||||||||||||||||
В1,5 | В2 | В2,5 | В3,5 | В5 | В7,5 | В10 | В12,5 | В15 | В20 | В25 | в30 | B35 | В40 | В45 | В50 | В55 | В60 | В70 | В80 | В90 | В100 | ||
Сжатие осевое (призменная прочность) | Тяжелый, мелкозернистый и напрягающий | — | — | — | 2,1 | 2,8 | 4,5 | 6,0 | 7,5 | 8,5 | 11,5 | 14,5 | 17,0 | 19,5 | 22,0 | 25,0 | 27,5 | 30,0 | 33,0 | 37,0 | 41,0 | 44,0 | 47,5 |
Легкий | — | — | 1,5 | 2,1 | 2,8 | 4,5 | 6,0 | 7,5 | 8,5 | 11,5 | 14,5 | 17,0 | 19,5 | 22,0 | — | — | — | — | — | — | — | — | |
Ячеистый | 0,95 | 1,3 | 1,6 | 2,2 | 3,1 | 4,6 | 6,0 | 7,0 | 7,7 | — | — | — | — | — | — | — | — | — | — | — | — | — | |
Растяжение осевое | Тяжелый, мелкозернистый и напрягающий | — | — | — | 0,26 | 0,37 | 0,48 | 0,56 | 0,66 | 0,75 | 0,90 | 1,05 | 1,15 | 1,30 | 1,40 | 1,50 | 1,60 | 1,70 | 1,80 | 1,90 | 2,10 | 2,15 | 2,20 |
Легкий | — | — | 0,20 | 0,26 | 0,37 | 0,48 | 0,56 | 0,66 | 0,75 | 0,90 | 1,05 | 1,15 | 1,30 | 1,40 | — | — | — | — | — | — | — | — | |
Ячеистый | 0,09 | 0,12 | 0,14 | 0,18 | 0,24 | 0,28 | 0,39 | 0,44 | 0,46 | — | — | — | — | — | — | — | — | — | — | — | — | — | |
Примечания 1 Значения сопротивлений приведены для ячеистого бетона средней влажностью 10 %. 2 Для мелкозернистого бетона на песке с модулем крупности 2,0 и менее, а также для легкого бетона на мелком пористом заполнителе значения расчетных сопротивлений Rbt следует принимать с умножением на коэффициент 0,8. 3 Для поризованного бетона, а также для керамзитоперлитобетона на вспученном перлитовом песке значения расчетных сопротивлений Rbt следует принимать как для легкого бетона с умножением на коэффициент 0.7. 4 Для напрягающего бетона значения Rbt следует принимать с умножением на коэффициент 1,2. 5 Для тяжелых бетонов классов В70 — В100 расчетные значения сопротивления осевому сжатию Rb и осевому растяжению Rbt приняты с учетом дополнительного понижающего коэффициента γb,br, учитывающего увеличение хрупкости высокопрочных бетонов в связи с уменьшением деформаций ползучести и равного , где В — класс бетона по прочности на сжатие. |
Таблица 6.9
Вид сопротивления | Бетон | Расчетные значения сопротивления бетона для предельных состояний первой группы Rbt, МПа, при классе бетона по прочности на осевое растяжение | ||||||
Вt 0,8 | Вt 1,2 | Вt 1,6 | Вt 2,0 | Вt 2,4 | Вt 2,8 | Вt 3,2 | ||
Растяжение осевое Rbt | Тяжелый, мелкозернистый, напрягающий и легкий | 0,62 | 0,93 | 1,25 | 1,55 | 1,85 | 2,15 | 2,45 |
saitinpro.ru
Расчётное сопротивление бетона осевому сжатию и растяжению
Для обеспечения прочности и долговечности конструкций из бетона на стадии проектирования производятся расчёты, учитывающие основные характеристики материала. К ним относятся морозоустойчивость, водонепроницаемость, прочностные характеристики. Расчётное сопротивление бетона определяется в зависимости от нормативного сопротивления для этого класса материала.
Расчетные значения
Прочность является определяющей характеристикой бетона. От неё зависят эксплуатационные качества возводимых сооружений, их долговечность и надёжность. Проверка прочности производится в лабораторных условиях по образцам. При проверке прочности на сжатие проверяется марка бетона. Цифровое значение марки является пределом прочности на сжатие, выраженным в Мегапаскалях.
При проектировании бетонных сооружений производят расчёты по двум группам предельных состояний. Первая группа — это полная непригодность к эксплуатации, включая разрушение. Вторая группа — это непригодность, которая определяется появлением трещин и недопустимых деформаций.
В зависимости от группы предельных состояний выбираются коэффициенты надёжности, которые вводятся, чтобы снизить допустимые нагрузки на конструкцию.
Расчётные сопротивления бетона сжатию в таблицах 1 и 2 вычисляются путём деления величин нормативного сопротивления бетона на коэффициенты надёжности. В формулы для определения прочности вводят коэффициенты, зависящие от характера нагрузок, условий эксплуатации и учитывающие характер разрушений этого типа строений. Расчётные сопротивления бетона осевому сжатию Rb, Rb, ser и осевому растяжению Rbt, Rbt, ser приводятся в таблицах 1 и 2. Характеристики предельных состояний первой группы приводятся в таблице 2, а второй группы — в таблице 1.
Таблица 1.
Таблица 2.
Характеристики материала
Информация о характеристиках материала необходима при строительстве объектов. Недостаточная прочность может привести к образованию трещин и досрочному выходу сооружения из строя. Прочностные характеристики материала определяются в испытаниях по образцам в лабораторных условиях. Способы исследования бывают разрушающие и неразрушающие.
Для разрушения используются образцы, изготовленные из пробы испытуемой бетонной смеси или полученные бурением поверхности бетонной конструкции. Образцы сжимаются прессом. Нагрузка увеличивается постепенно до того момента, пока образец полностью не разрушится. По величине критической нагрузки и рассчитываются значения прочности материала. Для этого величину нагрузки делят на площадь поперечного сечения испытуемого объекта и умножают на масштабный коэффициент.
Неразрушающие методы проводятся прямо на бетонной поверхности, для них не требуются образцы. Исследование проводится следующими методами:
- частичное разрушение;
- ударный метод;
- ультразвуковое исследование.
Это способы местного воздействия, не наносящие большого вреда бетонной конструкции. Но они имеют меньшую точность, чем разрушающие методики. При сдаче здания в эксплуатацию обязательным является исследование методом разрушения проб.
Факторы прочности
Скорость химических процессов, протекающих в водных растворах, оказывает большое влияние на характеристики бетона. Причинами, способствующими увеличению прочности, можно считать следующие:
Главным фактором является активность цемента. Чем он активнее, тем прочнее получится материал. Точным считается метод определения активности в лабораторных условиях. Существуют различные экспресс-технологии, способные дать ответ на вопрос о возможности использования материала. Для частного и неответственного строительства можно составить представление о качестве цемента путём осмотра. Хороший материал должен быть серо-зеленоватого цвета и хорошо сыпаться. Если присутствуют небольшие комки, то их легко раздавить пальцами. Если же есть большие твёрдые комья, то можно сделать вывод, что цемент потерял активность и не может быть использован в строительстве.
- Большое значение имеет также процентное соотношение цемента в растворе. Чем выше процент цемента, тем лучше будут прочностные характеристики бетона. Очень важным является соотношение воды и цемента в смеси. Бетон способен связывать только 15−20% воды, входящей в его состав. Это значительно меньше, чем количество воды, присутствующее в растворе. Из-за этого образуются поры, и прочность материала уменьшается.
- Применение в качестве наполнителей крупнофракционного материала хорошо сказывается на свойствах бетона.
- Время застывания тоже играет важную роль. Стопроцентные показатели предела прочности бетон приобретает только через 28 суток. Испытания бетонных образцов проводятся на третьи сутки, когда материал достигает 30% от своих максимальных прочностных характеристик.
- Условия внешней среды тоже влияют на процесс отвердевания бетона. Наилучшие условия отвердевания создаются при температуре 15−20 °C и высокой влажности. Увеличение прочности продолжается до тех пор, пока материал полностью не высохнет или не замёрзнет.
Долговечность и надёжность конструкций из бетона во многом зависит от качества проектирования. Необходимо учитывать все характеристики материалов, подбирать наиболее пригодные в существующих условиях и учитывать особенности работы материалов с разными видами нагрузок.
Материал хорошо работает на сжатие, а расчётное сопротивление растяжению у бетона на порядок хуже. Поэтому нужно избегать внецентренных нагрузок и изгибающих моментов.
tvoidvor.com
2.2.4. Нормативные и расчетные сопротивления бетона
Как уже было отмечено выше, прочностные характеристики бетона обладают изменчивостью. Для оценки изменчивости используются методы теории вероятностей. Если принять изменчивость бетона подчиняющейся закону Гаусса (рис.2.4.), можно найти прочность Rn, которая будет обеспечена с заданной надежностью:
(2.39)
где - граница области отклонения прочности от среднего значения.
Рис. 2.4. Кривая распределения прочности
При к = 1 вероятность отклонения от среднего значения составляет 84%, при к = 2 - 97% и при к = 3 - 99,9%. Таким образом, при отклонении от среднего значения прочности бетона на 3, вероятность появления случайной величины (прочность бетона) меньше Rn = Rm - , составляет одну тысячную процента.
Для практических расчетов класс бетона В или нормативное сопротивление бетонных кубов сжатию контролируется с обеспеченностью 95%, что соответствует значению к = 1,64. В этом случае класс бетона
или
(2.40)
где коэффициент вариации прочности бетона;
- среднеквадратичное отклонение, Rm - среднее значение временного сопротивления бетона сжатию.
Коэффициент вариации бетона - величина переменная. Его нормативное значение приближенно принято нормами, равным 0,135. Таким образом гарантированная прочность заданного нормами класса бетона
(2.41)
Нормативным сопротивлением бетона осевому сжатию является его призменная прочность с обеспеченностью 95%. С такой же обеспеченностью принимается и нормативное сопротивление бетона осевому растяжению. Значения
и
определяются по нормативному сопротивлению кубиковой прочности по формулам
;
(2.42)
где k = 0,8 для бетонов класса В35 и ниже, k = 0,7 для бетонов класса В40 и выше.
Расчетные сопротивления бетона для предельных состояний первой группы Rb и определяют делением нормативных значений на коэффициенты надежности бетона при сжатии
или при растяжении
.
Для тяжелого бетона ;
.
Расчетные сопротивления бетона для предельных состояний второй группы и
определяются при коэффициентах надежности ,
т.е. принимаются равными нормативным сопротивлениям за исключением случаев расчета по образованию трещин.
При расчете элементов конструкций расчетные сопротивления бетона в необходимых случаях умножаются на коэффициенты условий работы , учитывающие следующие факторы: длительность действия нагрузки, условия изготовления, характер работы конструкции, способы изготовления и т.п.
2.2.5. Нормативные и расчетные сопротивления арматуры
Нормативные сопротивления арматуры принимают равными наименьшему контролируемому значению с обеспеченностью 95%: для стержневой арматуры, высокопрочной проволоки и канатов -физическому или условному
пределу текучести; для обыкновенной арматурной проволоки -- условному пределу текучести
.
Расчетные сопротивления арматуры определяются по формуле
(2.44)
где - коэффициент надежности по арматуре
= 1,05 - 1,2 при расчете по предельным состояниям первой группы и
=1 – второй группы.
Расчетные сопротивления арматуры сжатию принимаются равными соответствующим расчетным сопротивлениям растяжению
, но не более 400 МПа.
Если при расчете конструкций учитывается длительность действия нагрузки (), то допускается принимать: Rsc=450 МПа для арматуры классов
A-IV, Ат-IVC; Rsc=500Mna для арматуры классов A-V, Ат-V, A-VI, At-VI,
В-П, Bp-II, K-7, К-19. При этом должны соблюдаться специальные конструктивные требования по установке поперечной арматуры. При отсутствии сцепления арматуры с бетоном Rsc =0.
При расчете конструкций расчетные сопротивления Rs, Rsw, Rsc следует умножить на коэффициенты условий работы , учитывающие возможность неполного использования ее прочностных свойств.
studfiles.net
Новости |
14.11.2018 |
11.01.2019 |