Прочность арматуры на растяжение
Мифы о композитной арматуре
Прежде, чем приобрести композитную арматуру, любой покупатель пожелает узнать особенности ее применения, положительные и отрицательные стороны, и главный источник информации - интернет. Но понять, какая информация достоверна, не всегда удается. Попробуем дать ответ на наиболее сложные вопросы и развеять устоявшиеся мифы:
Миф первый: Арматура из композита – «резиновая». Подразумевается, что у композитной арматуры модуль упругости ниже, чем у стальной. Так ли это?
Модуль упругости:
Чтобы растянуть образец на заданное некоторое расстояние, необходимо приложить определенное усилие – это и есть модуль упругости. У композитной арматуры он составляет 45000 Мпа, у металлической – 200 000 Мпа. Значит арматуру из композита в 4 раза легче «растянуть». Однако проведенные исследования доказали, то у стальных материалов величина модуля упругости не постоянна и резко снижается при усилении нагрузки из-за появления пластических деформаций. Главная задача арматуры в бетоне – работа на растяжение и разрыв. У самого бетона модуль упругости имеет колебания в пределах от 20000 до 30000 Мпа, в зависимости от марки, но резиновым его назвать сложно.
Учитывая свойства материала, необходимо учитывать полный комплекс его характеристик, который включает относительное удлинение на разрыв, временное сопротивление разрыву, предел текучести, равномерное удлинение.
Конструкция из железобетона при нагрузке ведет себя следующим образом: После небольшого растяжения в бетоне появляются микротрещины, после чего металлическая арматура препятствует окончательному его растрескиванию. Микротрещины в нагружаемой конструкции явление обычное, так как даже при минимальной нагрузке предотвратить их появление невозможно. От модуля упругости арматуры зависит размер этих трещин, чем он меньше, тем сильнее бетон «провиснет». Чтобы вся конструкция не обрушилась, в действие вступает предел прочности. Чем выше этот предел, тем более сильную нагрузку выдержит бетон. У самого бетона предел прочности при растяжении в 8-20 раз ниже прочности при сжатии. Маркировка В25 означает, что данный класс материала способен выдержать давление на сжатие 25Мпа, а на растяжение всего 1-4 Мпа. У стали этот показатель равен 400 Мпа, а у композитной арматуры 1200 Мпа. Данная характеристика показывает, что конструкция с композитной арматурой способна выдержать в 3 раза большую нагрузку, чем с металлической. Но при этом она в 4 раза сильнее провиснет. Размер микротрещин при одинаковой нагрузке в бетоне с металлической арматурой будет в 4 раза меньше.
Деформация растяжения:
Использование стальной арматуры регулируется ГОСТами и СНиПами, так как со временем она подвергается коррозии, теряет свойства, что может привести к обрушению конструкции. Арматура из композита не ржавеет и разрушение ей не грозит. Однако появление трещин в бетоне не является только следствием коррозии. При усилии на разрыв деформация стеклопластика составляет до 2,8%, а металла 25%.
В СП52-101-2003 указано, что армированные бетонные конструкции дают трещины при деформации растяжения 0,015%, т.е. задолго до предела прочности арматуры, независимо от ее материала (композита или стали).
Если возникло желание заменить металлическую арматуру на композитную в перекрытиях или несущих стенах, необходимо произвести перерасчет проектно-технической документации, что позволит избежать появления крупных трещин. Перерасчет производится для конструкций, подвергающихся максимальным нагрузкам. В местах, где предполагается минимальная нагрузка, допускается замена металлической арматуры на композитную с меньшим диаметром. СНиП позволяет не производить перерасчет раскрытия трещин, не предусмотренных конструкцией. Поэтому элементы конструкции, не подверженные сильной нагрузке, можно смело выполнять с применением стеклопластиковой арматуры.
Миф второй. Равнопрочная или равнозначная замены? В чем разница?
Не следует путать равнопрочную и равнозначную замены. Если образец не уступает по прочности исходную конструкцию, то говорят о равнопрочной замене. В данном случае под прочностью подразумевается «предел прочности», максимальное механическое напряжение, после которого наступает разрушение материала. В ГОСТе 1497-84 под прочностью понимается «временное сопротивление разрушения», напряжение, которое соответствует максимальному усилию перед разрывом образца при испытаниях.
Если произвести замеры двух образцов из металла и композитного материала, получим следующие показатели: прочность на разрыв у композита диаметром 10 мм составит 63000 Мпа, а у стали диаметром 14 мм 60 000 Мпа. Это показывает, что данная замена не является равнопрочной, так как арматура из композита прочнее на 5%. Отсюда вывод, что при равнопрочной замене металлическую арматуру диаметром 14 мм можно смело заменить на композитную с диаметром 10мм.
Что же такое равнозначная замена? При такой замене физические характеристики образцов должны быть идентичны. Если у стеклопластиковой арматуры модуль упругости в 4 раза меньше, чем у металлической, то для замены ее необходимо брать в 4 раза больше. Способность твердого тела деформироваться при приложении к нему усилия называют модулем упругости. Этот термин включает в себя несколько физических величин. Рассчитаем диаметры материалов при равнозначной замене. Если композитного материала необходимо в 4 раза больше, то используя формулу площади круга получаем, что для замены металлической арматуры диаметром 10 мм требуется стеклопластик диаметром 20 мм.
Полученные расчеты необходимо учесть до начала строительства или составления проекта, и четко понимать разницу между равнозначной и равнопрочной заменой.
В конструкциях, где прогиб арматуры не имеет особого значения, целесообразно использовать более прочные композитные материалы. В плитах перекрытия или несущих стенах требуется использование металлической арматуры с высоким модулем упругости или производить перерасчет при использовании стеклопластика.
izh-reduktor.ru
ГОСТ 12004-81: Сталь арматурная. Методы испытания на растяжение / Арматура / Законодательство
ГОСТ 12004-81
УДК 669.14:691.87:620.172:006.354
Группа В09
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
СТАЛЬ АРМАТУРНАЯ
МЕТОДЫ ИСПЫТАНИЯ НА РАСТЯЖЕНИЕ
ГОСТ 12004-81
ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ
Москва
Группа В09
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
СТАЛЬ АРМАТУРНАЯ
Методы испытания на растяжение
Reinforcing-bar steel.
Дата введения 01.07.83
Настоящий стандарт устанавливает методы испытаний на растяжение при температуре ()°С арматурной стали номинальным диаметром от 3,0 до 80 мм (проволоки, стержни и арматурные канаты) круглого и периодического профиля, предназначенной для армирования обычных и предварительно напряженных железобетонных конструкций для определения механических свойств:
полного относительного удлинения при максимальной нагрузке;
относительного удлинения после разрыва;
относительного равномерного удлинения после разрыва;
относительного сужения после разрыва;
временного сопротивления;
предела текучести (физического);
пределов текучести и упругости (условных);
модуля упругости (начального).
Термины, обозначения и определения приведены в приложении 1.
1. МЕТОДЫ ОТБОРА ОБРАЗЦОВ
Для испытания на растяжение применяются образцы арматуры круглой или периодического профиля с необработанной поверхностью номинальным диаметром от 3,0 до 80мм. Допускается проводить испытания образцов горячекатаной стержневой арматуры номинальным диаметром более 20 мм на обточенных образцах цилиндрической формы с головками по возможности с сохранением на головках поверхности проката. Форма, размеры и требования к обработке рабочей части образцов по ГОСТ 1497-84.
Вытачивать образцы следует так, чтобы продольные оси стержня и образца были параллельны. При диаметре стержня до 40 мм включительно продольные оси стержня и образца могут совпадать, при диаметре стержней от 45 до 60 мм и от 70 до 80 мм расстояние от оси стержня до оси образца должно соответственно составлять 1/8 и 1/4 d (черт. 1)
d до 40мм d от 45 до 60 ммd от 70 до 80 мм
Черт. 1
(Измененная редакция, Изм. № 2).
1.2. Допускается перед испытанием проводить правку образца плавным давлением на него или легкими ударами молотка по образцу, лежащему на подкладке. Подкладка и молоток должны быть из более мягкого материала, чем образец.
Недопустимость правки образцов должна быть оговорена в НТД на арматурную сталь.
1.3. Полная длина образца арматуры выбирается в зависимости от рабочей длины образца и конструкции захвата испытательной машины.
Рабочая длина образца должна составлять:
для образца с номинальным диаметром до 20 мм включительно - не менее 200 мм;
для образца с номинальным диаметром свыше 20 мм - не менее 10d;
для арматурных канатов всех диаметров - не менее 350 мм.
Начальная расчетная длина для образцов стержневой арматуры и проволоки должна быть установлена по нормативно-технической документации на готовую продукцию, а для образцов арматурных канатов должна составлять 300 мм.
(Измененная редакция, Изм № 1, 2).
1.4. Начальную площадь поперечного сечения необработанных образцов арматуры периодического профиля Fо, мм2, вычисляют по формуле
где т - масса испытуемого образца кг;
l - длина испытуемого образца, м;
р - плотность стали, 7850 кг/м3.
1.5. Для обточенных и круглых образцов арматуры номинальным диаметром от 3,0 до 40,0мм определяют площадь поперечного сечения измерением диаметра по длине образца в трех сечениях: в середине и по концам рабочей длины; в каждом сечении в двух взаимно перпендикулярных направлениях. Площадь поперечного сечения образца вычисляют как среднюю арифметическую величину этих шести измерений.
1.6. Площадь поперечного сечения каната определяют как сумму площадей поперечного сечения отдельных проволок, составляющих канат.
Допускается использовать номинальную площадь сечения канатов, указанную в нормативно-технической документации на канаты.
(Измененная редакция, Изм. № 1).
1.7. Начальную расчетную длину l0 измеряют с погрешностью не более 0,5мм.
1.8. Диаметры круглых и обточенных образцов арматуры номинальным диаметром от 3,0 до 40,0мм измеряют штангенциркулем по ГОСТ 166-89 или микрометром по ГОСТ 6507-90.
1.9. Массу испытываемых образцов арматуры периодического профиля номинальным диаметром менее 10 мм определяют с погрешностью не более 1,0 г, образцов арматуры диаметром от 10 до 20 мм - с погрешностью не более 2,0 г, а образцов диаметром более 20 мм - с погрешностью не более 1 % от массы образца.
Образцы арматурной стали взвешивают на весах по ГОСТ 29329-92, а длину образца измеряют металлической линейкой по ГОСТ 427-75.
2. АППАРАТУРА
2.1. Применяют машины всех систем при условии их соответствия требованиям настоящего стандарта и ГОСТ 1497-84.
2.2. При проведении испытаний должны соблюдаться требования:
надежное центрирование образца;
плавность нагружения;
средняя скорость нагружения при испытании до предела текучести не должна быть более 10 МПа (1 кгс/мм2) в секунду; за пределом текучести скорость нагружения может быть увеличена так, чтобы скорость перемещения подвижного захвата машины не превышала 0,1 рабочей длины испытуемого образца в минуту; шкала силоизмерителя испытательной машины не должна превышать пятикратного ожидаемого значения наибольшей нагрузки Р для испытываемого образца арматуры;
конструкция захватов испытательной машины должна исключать возможность поворота концов каната вокруг оси образца.
2.3. Измерительные приборы должны ссответствовать требованиям настоящего стандарта и ГОСТ 18957-73.
2.4. При определении условных пределов упругости и текучести с помощью тензометра относительная длина деления шкалы тензометра не должна превышать:
0,005 % базы тензометра при определении ;
0,05 % базы тензометра при определении .
3. ПРОВЕДЕНИЕ ИСПЫТАНИЙ И ОБРАБОТКА РЕЗУЛЬТАТОВ
3.1. Величину относительного удлинения , % вычисляют по формуле
.
В зависимости от величины начальной расчетной длины образца к букве добавляют индекс. Например, при начальной расчетной длине, равной 5d, - , при 100мм - и т.д.
Для обточенных образцов определение относительного удлинения по ГОСТ 1497-84.
3.1.1. Конечную расчетную длину образца lк, включающую место его разрыва, определяют следующим способом.
Перед испытанием образец на длине, больше рабочей длины образца, размечается на n равных частей при помощи меток, наносимых делительной машиной, скобками или керном. Расстояние между метками для арматуры диаметром 10 мм и более не должно превышать величину d и быть кратным 10 мм. Для арматуры диаметром менее 10 мм расстояние между метками принимается равным 10мм. Допускается при разметке образцов расстояние между метками принимать более 10 мм и превышающим величину d, но не более величины начальной расчетной длины l0.
Если число интервалов n, соответствующее начальной длине образца, получается дробным, его округляют до целого в большую сторону.
После испытания части образца тщательно складывают вместе, располагая их по прямой линии. От места разрыва в одну сторону откладывается n/2 интервалов и ставят метку а. Если величина n/2 оказывается дробной, то ее округляют до целого числа в большую сторону. Участок от места разрыва до первой метки при этом считается как целый интервал.
От метки а откладывают в сторону разрыва n интервалов и ставят метку b (черт. 2). Отрезок ab равен полученному по месту разрыва конечной расчетной длине lк.
Если место разрыва ближе к краю захвата машины чем величина n/2 (черт. 3), то полученную после разрыва конечную расчетную длину lк определяют следующим образом:
от места разрыва до крайней метки q у захвата определяют число интервалов, которое обозначают т/2. От точки q к месту разрыва откладывают т интервалов и ставят метку с. Затем от метки с откладывают n/2 - т/2 интервалов и ставят метку е.
Конечную расчетную длину образца lк, мм, вычисляют по формуле
,
где cq и ce - соответственно длина участка образца между точками с и q и с и e.
Если место разрыва находится на расстоянии от захвата, меньшем чем длина двух интервалов или 0,3 l0 - для образцов диаметром менее 10 мм, величина расчетной длины не может быть достоверно определена и проводят повторное испытание.
Черт. 2
(Измененная редакция, Изм. № 2).
3.2а. Конечную расчетную длину образца lк арматурных канатов определяют с помощью тензометров, навешиваемых на канат линеек или специальных приборов, позволяющих измерять деформацию образца до разрушения. Перед установкой тензометра, линеек или других приборов к образцу прикладывают начальную нагрузку, составляющую 0,1 - 0,15 % от ожидаемого разрывного усилия.
(Введен дополнительно, Изм. № 1).
3.2. Относительное равномерное удлинение определяется во всех случаях вне участка разрыва на начальной расчетной длине, равной 50 или 100 мм. При этом расстояние от места разрыва до ближайшей метки начальной расчетной длины для арматуры диаметром 10 мм и более не должно быть менее 3d и более 5d, а для арматуры диаметром менее 10 мм - от 30 до 50 мм.
Черт. 3
3.2.1. Для определения величины относительного равномерного удлинения конечная расчетная длина lи определяется по меткам (см. черт. 2 и 3).
Величину относительного равномерного удлинения , %, вычисляют по формуле
3.2.2. Конечные расчетные длины lк и lи измеряют с погрешностью не более 0,5мм.
3.2.3. Относительное удлинение и относительное равномерное удлинение после разрыва вычисляют с округлением до 0,5 %. При этом доли до 0,25 % отбрасывают, а доли 0,25 % и более принимают за 0,5%.
3.3. Полное относительное удлинение при максимальной нагрузке может быть определено одним из способов:
с помощью тензометров или иных специальных приборов позволяющих измерять деформации образца вплоть до разрушения;
суммированием остаточной деформации после разрушения образца с упругими деформациями при максимальной нагрузке по формуле
3.4. Относительное сужение после разрыва определяется на круглых образцах проволоки и стержневой арматуры, а также на обточенных образцах цилиндрической формы в соответствии с требованиями ГОСТ 1497-84.
3.5. Временное сопротивление , МПа (кгс/мм2), вычисляют с погрешностью не более 5 МПа (0,5 кгс/мм2) по формуле
3.6. Предел текучести , МПа (кгс/мм2), вычисляют с погрешностью не более 5 МПа (0,5 кгс/мм2) по формуле
3.7. Условный предел упругости определяют исходя из величины допуска i на условно-мгновенную
пластическую деформацию, равную от 0,02 до 0,1 % расчетной длины по тензометру включительно. При этом к букве добавляют индекс, соответствующий принятому допуску i. Например, при допуске, равном 0,05 %, условный предел упругости обозначается и т.д.
3.7.1. Условные пределы упругости и текучести могут быть определены аналитическим и графическим способами.
Тензометр на образец устанавливают после приложения начальной нагрузки, соответствующей 0,05-0,10 ожидаемой величины временного сопротивления .
При испытании арматурных канатов предварительно проводят не менее чем двукратное нагружение - разгружение в интервале 0,1 - 0,35 ожидаемого разрывного усилия.
Нагрузка прикладывается равными или пропорциональными этапами, так чтобы до нагрузки, соответствующей искомому пределу, было не менее 8-10 этапов нагружения, считая от начальной нагрузки.
При достижении суммарной нагрузки, соответствующей 0,7-0,9 искомого предела, рекомендуется уменьшить величину этапа нагружения в два или четыре раза.
Выдержка при постоянной нагрузке на каждом этапе нагружения без учета времени приложения нагрузки должна быть не более 10 с.
3.7.2. Условный предел текучести определяют аналитическим способом. Вычисляют величину остаточной деформации = 0,2 % базы тензометра; затем определяют среднюю величину упругой деформации на одном этапе нагрузки, исходя из величины средней деформации, найденной на этапах нагружения в интервале 0,10-0,40 предполагаемого усилия, соответствующего пределу текучести, а для арматурных канатов в интервале 0,10-0,40 временного сопротивления.
Нагрузка Р0,2, при которой будет обеспечено равенство , соответствует условному пределу текучести в МПа (кгс/мм2), который вычисляется с погрешностью не более 5 МПа (0,5 кгс/мм2) по формуле
.
Условные пределы упругости определяются в том же порядке: вычисляют величину остаточной деформации, например для равную =0,02% базы тензометра, используя среднюю величину упругой деформации на одном этапе, определяют нагрузку Р0,02, соответствующую удлинению .
Условный предел упругости , МПа (кгс/мм2), вычисляют с погрешностью не более 5 МПа (0,5 кгс/мм2) по формуле
3.7.3. Графический способ определения условных пределов текучести и упругости: строится диаграмма растяжения «нагрузка - удлинение». По оси ординат откладывают нагрузку, а по оси абсцисс - соответствующее удлинение (черт. 4).
На диаграмме проводится прямая, параллельная участку пропорциональной зависимости Р - на расстоянии от прямой части диаграммы вправо по оси абсцисс в направлении, равном заданной величине допуска на условно-мгновенную пластическую деформацию для условных пределов упругости или текучести. Сила, соответствующая пределу упругости или текучести, определяется точкой пересечения этой прямой с диаграммой растяжения.
При определении условного предела текучести и условного предела упругости графическим способом диаграмму растяжения Р - строят в таком масштабе, при котором 0,1 % деформации образца соответствовал участок оси ординат длиной не менее 10 мм, а нагрузке, примерно соответствующей условному пределу текучести, - участок оси абсцисс не менее 100 мм.
Допускается определение условного предела текучести по машинной диаграмме по ГОСТ 1497-84 с проведением периодических контрольных испытаний с помощью тензометров.
Объем, периодичность и методика проведения испытаний должны быть установлены по нормативно-технической документации на готовую продукцию.
Черт. 4
Примеры определения условных пределов упругости и текучести приведены в приложениях 2 и 3.
(Измененная редакция, Изм. № 2).
3.8. Для стержней и проволоки начальный модуль упругости равен отношению приращения напряжений в интервале от 0,1 до 0,35Рmax к относительному удлинению образца в том же интервале нагружения.
Начальный модуль упругости Ен определяется с погрешностью не более 1 % по формуле
При этом в интервале от 0,1 до 0,35Рmax должно быть не менее трех последовательных этапов нагружения.
3.8.1. Для арматурных канатов начальный модуль упругости определяется по формуле п. 3.8 после двукратного нагружения и разгружения в интервале 0,1 и 0,35Рmax.
3.9. За результат испытания принимаются механические свойства, полученные при испытании каждого образца. Количество образцов для испытаний указывается в нормативно-технической документации на арматурную сталь.
3.10. Результаты испытаний не учитываются в следующих случаях:
при разрыве образца по нанесенным меткам, если при этом какая-либо характеристика механических свойств по своей величине не отвечает установленным требованиям;
при разрыве образца в захватах испытательной машины;
при обнаружении ошибок в проведении испытаний или записи результатов испытаний.
ПРИЛОЖЕНИЕ 1
Справочное
ТЕРМИНЫ, ОБОЗНАЧЕНИЯ И ОПРЕДЕЛЕНИЯ
Термин |
Условное обозначение |
Единица измерения |
Определение |
1. Номинальный диаметр образца |
d |
мм |
Для стержневой арматуры равен номинальному диаметру равновеликих по площади поперечного сечения круглых стержней; для упрочненной вытяжки стержневой арматурной стали равен номинальному диаметру стержней до их вытяжки; для арматурной проволоки равен номинальному диаметру проволоки до нанесения на нее периодического профиля; для арматурных канатов равен их номинальному диаметру |
2. Начальная площадь поперечного сечения образца |
F0 |
мм2 |
Площадь поперечного сечения образца до его испытания |
3. Рабочая длина образца |
l1 |
мм |
Часть образца между зажимными устройствами испытательной машины |
3а. Начальная расчетная длина |
l0 |
мм |
Расчетная длина до начала испытания образца, на базе которой проводится измерение удлинений |
4. Полная длина образца |
lп |
мм |
Длина образца, равная рабочей длине плюс участок для закрепления стержней в захватах |
5. Конечная расчетная длина |
lк |
мм |
Расчетная длина, измеренная после разрыва образца на участке, включающем место разрыва |
6. Конечная расчетная длина, не включающая место разрыва |
lи |
мм |
Расчетная длина, измеренная после разрыва образца на участке, не включающем место разрыва |
7. Расчетная длина по тензометру |
lт |
мм |
Участок рабочей длины образца, равный базе тензометра |
8. Осевая растягивающая нагрузка |
Р |
Н (кгс) |
Нагрузка, действующая на образец в данный момент испытания |
9. Напряжение |
Н/мм2 (кгс/мм2) |
Напряжение, определяемое отношением нагрузки Р к площади поперечного сечения F0 |
|
10. Полное относительное удлинение при максимальной нагрузке |
% |
Отношение приращения расчетной длины образца определяемое в момент начала снижения наибольшей нагрузки предшествующей разрушению к начальной расчетной длине выраженное в процентах от начальной расчетной длины |
|
11. Относительное удлинение после разрыва |
% |
Отношение приращения расчетной длины образца, в пределах которой произошел разрыв, к начальной расчетной длине, выраженное в процентах от начальной расчетной длины |
|
12. Относительное равномерное удлинение после разрыва |
% |
Отношение приращения расчетной длины образца после разрыва на участке, не включающем место разрыва, к начальной расчетной длине, выраженное в процентах от начальной расчетной длины |
|
13. Относительно сужение после разрыва |
% |
Отношение разности начальной и минимальной площадей поперечного сечения образца после разрыва к начальной площади поперечного сечения, выраженное в процентах |
|
14. Временное сопротивление |
Н/мм2 (кгс/мм2) |
Напряжение, соответствующее наибольшей нагрузке Рmax, предшествующей разрушению образца |
|
15. Предел текучести (физический) |
Н/мм2 (кгс/мм2) |
Напряжение, соответствующее наименьшей нагрузке Рт, при которой образец деформируется без заметного ее увеличения |
|
16. Предел упругости (условный) |
Н/мм2 (кгс/мм2) |
Напряжение, при котором условно-мгновенная пластическая деформация достигает заданной величины расчетной длины по тензометру |
|
17. Предел текучести (условный) |
Н/мм2 (кгс/мм2) |
Напряжение, при котором условно-мгновенная пластическая деформация достигает 0,2 % расчетной длины по тензометру |
|
18. Модуль упругости (начальный) |
Ен |
Н/мм2 (кгс/мм2) |
Отношение приращения напряжения к соответствующему приращению упругой деформации на начальном этапе нагружения |
(Измененная редакция, Изм. № 1).
ПРИЛОЖЕНИЕ 2
Рекомендуемое
ПРИМЕР ОПРЕДЕЛЕНИЯ УСЛОВНОГО ПРЕДЕЛА УПРУГОСТИ И УСЛОВНОГО ПРЕДЕЛА ТЕКУЧЕСТИ ДЛЯ СТЕРЖНЕВОЙ АРМАТУРЫ И ПРОВОЛОКИ
1. Аналитический метод
1.1. Образец горячекатаной арматурной стали марки А-IV периодического профиля номинальным диаметром 14мм. Полная длина образца 400 мм. Начальная площадь сечения F0 = 150 мм2.
1.2. Испытание проводят с измерением тензометрами деформаций по двум диаметрально противоположным ребрам образца. База одного тензометра lт = 100 мм, а сумма баз двух тензометров 2lт = 200 мм.
1.3. Величина остаточной деформации при определении условного предела текучести равна 0,2 % от суммарной базы тензометров или 0,4 мм при длине 200 мм. Величина остаточной деформации при определении предела упругости равна 0,02 % от суммарной базы тензометров или 0,04 мм при длине 200 мм.
1.4. На образец после его установки в захваты испытательной машины прикладывается начальная нагрузка, равная 1000 кг, которая составляет примерно 0,08Рmax. Устанавливают тензометры и проводят дальнейшее нагружение образца этапами по 1000кг до 7000кг, что составляет 0,7Р0,2 , и далее по 500 кг до общего удлинения образца порядка 1,0 %, что в данном случае соответствует нагрузке 11500 кг.
Результаты замеров нагрузок и деформаций записывают в таблице испытаний (см. таблицу).
Как видно из таблицы, в диапазоне от 1000 до 4000 кг одному этапу нагрузки в 1000кг соответствует суммарная деформация 6х10 мм. Определение условных пределов упругости и условного предела текучести аналитическим способом проводится с помощью данных, приведенных в таблице.
Номер п/п |
Нагрузка Р, (кгс) |
Отсчет по шкале тензометра, мм |
Суммарная деформация |
Приращение деформации на одном этапе 10-2, мм |
Упругая деформация |
Условно-мгновенная деформация |
|
левый |
правый |
||||||
1 |
9800 (1000) |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
19600 (2000) |
2,5 |
3,0 |
5,5 |
5,5 |
6,0 |
0,5 |
3 |
29400 (3000) |
6,0 |
6,0 |
12,0 |
6,5 |
12,0 |
0 |
4 |
39200 (4000) |
9,0 |
9,0 |
18,0 |
6,0 |
18,0 |
0 |
5 |
49000 (5000) |
12,0 |
12,0 |
24,0 |
6,0 |
24,0 |
0 |
6 |
58800 (6000) |
15,0 |
15,0 |
30,0 |
6,0 |
30,0 |
0 |
7 |
68600 (7000) |
18,0 |
18,0 |
36,0 |
6,0 |
36,0 |
0 |
8 |
73500 (7500) |
20,0 |
19,0 |
39,0 |
3,0 |
39,0 |
0 |
9 |
78400 (8000) |
22,0 |
21,0 |
43,0 |
4,0 |
42,0 |
1,0 |
10 |
83300 (8500) |
24,0 |
23,5 |
47,5 |
4,5 |
45,0 |
2,5 |
11 |
88200 (9000) |
26,5 |
25,5 |
52,0 |
4,5 |
48,0 |
4,0 |
12 |
93100 (9500) |
28,0 |
29,0 |
57,0 |
5,0 |
51,0 |
6,0 |
13 |
98000 (10000) |
37,0 |
40,0 |
77,0 |
20,0 |
54,0 |
23,0 |
14 |
102900 (10500) |
52,0 |
55,0 |
107,0 |
30,0 |
57,0 |
50,0 |
15 |
107800 (11000) |
74,0 |
77,0 |
151,0 |
44,0 |
60,0 |
91,0 |
16 |
112700 (11500) |
98,0 |
102,0 |
200,0 |
49,0 |
63,0 |
137,0 |
17 |
117600 (12000) |
- |
- |
- |
- |
- |
- |
По данным опыта величина остаточной деформации 0,04 мм соответствует нагрузке, равной 9000 кгс, т.е. Р0,02 - 9000 кгс. Следовательно, условный предел упругости равен:
Величина остаточной деформации, соответствующая условному пределу текучести, в данном случае составляет 0,4 или 40·10-2 мм.
Как видно из таблицы, величина остаточной деформации 0,4 мм несколько больше величины деформации при нагрузке 1000 кгс и меньше, чем при нагрузке 10500 кгс. Поэтому Р0,2 определяем по интерполяции
2. Графический метод
2.1. По данным измерений деформаций, приведенным в таблице, строим график Р- . По оси ординат откладываем нагрузку, а по оси абсцисс - соответствующее удлинение (см. черт. 4). На графике проводим прямые, параллельные участку пропорциональной зависимости диаграммы Р - , на расстоянии от прямой части диаграммы в направлении оси абсцисс, равном для условного предела текучести 0,4 мм и для предела упругости 0,04 мм. В точках пересечения этих линий диаграммой растяжения определяем нагрузки Р0,2 и Р0,02, соответствующие условным пределам текучести и упругости .
ПРИЛОЖЕНИЕ 3
Рекомендуемое
ПРИМЕР ОПРЕДЕЛЕНИЯ УСЛОВНОГО ПРЕДЕЛА ТЕКУЧЕСТИ АРМАТУРНЫХ КАНАТОВ
1. Испытанию подвергают образец каната номинальным диаметром 15 мм и начальной площадью поперечного сечения 141,6 мм2. Измеряют деформацию тензометрами по двум диаметрально противоположным сторонам образца. Цена деления шкалы тензометра 0,01мм. База тензометра 300 мм. Допуск на величину остаточной деформации при определении условного предела текучести 0,2 % от базы тензометра 300 мм составляет 0,6 мм. Учитывая, что замер деформации производят с двух сторон образца, заданное удвоенное отклонение составит 0,6х2 = 1,2 мм.
2. К испытываемому образцу после его установки в захваты испытательной машины прикладывают начальную нагрузку, равную 2000 кгс, которая соответствует примерно 0,1 от ожидаемого разрывного усилия Рmax = 23000 кгс. Устанавливают тензометр, снимают начальные отсчеты и проводят двукратное нагружение - разгружение образца в интервале 0,10 - 0,35 Рmax. Затем образец нагружают от 0,10 до 0,35 Рmax одной ступенью нагружения, от 0,35 до 0,8 Рmax не менее семи ступеней. Результаты замеров нагрузок и деформаций на каждом этапе нагружения записывают в таблицу.
Далее производится обработка показаний тензометров.
Нагрузка Р, (кгс) |
Отсчет по шкале тензометра, мм |
Сумма отсчетов по двум тензометрам 10-2, мм |
Полная деформация , 10-2, мм |
Упругая деформация , 10-2, мм |
Условно-мгновенная пластическая деформация , 10-2, мм |
|
левый |
правый |
|||||
19600 (2000) |
8 |
7 |
15 |
0 |
0 |
0 |
78400 (8000) |
72 |
68 |
140 |
125 |
125 |
0 |
19600 (2000) |
8 |
7 |
15 |
0 |
0 |
0 |
78400 (8000) |
68 |
67 |
135 |
120 |
120 |
0 |
19600 (2000) |
8 |
7 |
15 |
0 |
0 |
0 |
39200 (4000) |
28 |
27 |
55 |
40 |
40 |
0 |
58800 (6000) |
48 |
47 |
95 |
80 |
80 |
0 |
78400 (8000) |
68 |
67 |
135 |
120 |
120 |
0 |
98000 (10000) |
88 |
87 |
175 |
160 |
160 |
0 |
117600 (12000) |
108 |
107 |
215 |
200 |
200 |
0 |
127200 (14000) |
127 |
128 |
255 |
240 |
240 |
0 |
137000 (15000) |
141 |
140 |
281 |
266 |
260 |
6 |
146800 (16000) |
154 |
154 |
308 |
293 |
280 |
13 |
150600 (17000) |
168 |
168 |
336 |
321 |
300 |
21 |
160400 (18000) |
185 |
184 |
369 |
354 |
320 |
34 |
170200 (19000) |
203 |
202 |
405 |
390 |
340 |
50 |
175100 (19500) |
217 |
218 |
435 |
420 |
350 |
70 |
184900 (20000) |
230 |
230 |
460 |
445 |
360 |
85 |
194700 (20500) |
254 |
253 |
507 |
492 |
370 |
122 |
204500 (21000) |
293 |
293 |
586 |
571 |
380 |
191 |
3. Заданное отклонение от пропорциональной зависимости между напряжением и деформацией несколько больше полученной при нагрузке 20500 кгс и меньше чем при нагрузке 20000 кгс.
Поэтому Р0,2 определяем по интерполяции
ИНФОРМАЦИОННЫЕ ДАННЫЕ
1. РАЗРАБОТАН И ВНЕСЕН Министерством металлургии СССР
РАЗРАБОТЧИКИ: С.А. Мадатян, Т.И. Мамедов, И.Н. Суриков, В.М. Скубко, В.С. Гуменюк
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 15.12.81 № 5419
3. ВЗАМЕН ГОСТ 12004-66
4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который дана ссылка |
Номер пункта, подпункта |
ГОСТ 166-89 |
1.8 |
ГОСТ 427-75 |
1.9 |
ГОСТ 1497-84 |
1.1; 2.1; 3.1; 3.4; 3.7.3 |
ГОСТ 6507-90 |
1.8 |
ГОСТ 18957-73 |
2.3 |
ГОСТ 29329-92 |
1.9 |
5. Ограничение срока действия снято по решению Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 4-94)
6. ПЕРЕИЗДАНИЕ (декабрь 1995 г.) с Изменениями № 1, 2, утвержденными в июне 1985 г., августе 1990 г. (ИУС 9-85, 11-90)
www.estateline.ru
Принцип работы арматуры в фундаменте
Фундамент работает как несущее основание, на которое воздействуют все виды нагрузок от вышестоящих конструкций и которое равномерно распределяет их на почву.
Арматура из стали может абсолютно спокойно выдерживать нагрузки на растяжение в 10 раз больше, чем голый бетон.
В частном строительстве наиболее распространенным является фундамент ленточного типа. Он работает в виде замкнутой контур-ленты из сборного или монолитного железобетона, которая укладывается под несущими стенами постройки и по всему своему периметру распределяет вес строения. Большее распространение имеет ленточный фундамент из монолитного железобетона.
В процессе эксплуатации на фундамент воздействуют различные нагрузки, возникающие от веса самого здания, от морозного пучения и от движения грунтов. Нижняя часть при давлении дома имеет нагрузку на растяжения, а верхняя — на сжатие. Не стоит забывать и о силах морозного пучения, чья подъемная сила может значительно превышать вес здания и провоцировать растяжение в верхних частях ленточного фундамента.
В эпоху Петра І термин «арматура» обозначал армейское вооружение. Сегодня мы называем так «вооружение» стальными стержнями бетонного фундамента.
Смысл армирования
Ленточный малозаглубленный фундамент нужно армировать для того, чтобы компенсировать воздействующие на него нагрузки в процессе эксплуатации. Бетону свойственна большая прочность на сжатие, но вызывающие растяжение или срез бетона нагрузки могут с легкостью нарушить его структурную целостность. Устойчивость бетона к растяжению в 50 раз ниже, чем к сжатию. Трансформация при помощи стальной арматуры обычного бетона в совершенно новый материал, железобетон, дает возможность ленточному фундаменту получить улучшенную устойчивость к растягиванию.
Противостояние различным нагрузкам
Ленточный армированный фундамент является монолитной железобетонной рамой из надежно связанных балок, которая свободно лежит на упругом основании. Почва под основой фундамента не является неподвижной монолитной платформой; чаще всего она представляет собой неоднородную структуру, на которую воздействуют, провоцируя движение, влага, грунтовые воды, влияние снежного и растительного покровов, температура воздуха и пр. На конструкцию фундамента постоянно действуют различные нагрузки, возникающие от возможных движений почвы. Если представить, как работает нагрузка на ленточном фундаменте упрощенно, то можно говорить, что на нижнюю часть действует преимущественно растяжение, а верхняя часть испытывает сжатие.
Схема устройства ленточного фундамента.
Арматура из стали может спокойно, абсолютно без разрушений, выдерживать нагрузки на растяжение в 10 раз больше, чем голый бетон. Сталь имеет свойство удлиняться без разрывов при воздействии нагрузок на растяжение от 4 до 25 мм (тогда как бетон только на 0,2-0,4 мм). Бетон же лучше переносит нагрузку на сжатие. Соединенные в одном материале, железобетоне, бетон и сталь позволяют лучше переносить комплексные нагрузки на растяжение и сжатие. Равноудаленная от нижней и верхней частей ленточного фундамента часть фактически не воспринимает нагрузки. Это говорит от том, что использование срединного слоя продольных элементов, который нередко монтируют «для большей прочности», лишено необходимости. В том случае если вы возводите заглубленный фундамент (подземную стену), то и армировать его необходимо как монолитную бетонную стену.
Бывают такие случаи в самостоятельном дачном строительстве, когда строители работают так: они проводят армирование только нижней части фундамента. Аргументируется это тем, что нагрузка от здания не позволит балке выгнуться вверх, создавая этим самым растяжение в ее верхней части, в которой можно «сэкономить». Но такие горе-строители не берут во внимание немалую подъемную силу намокающей расширяющейся почвы или же силу морозного пучения при замерзании воды в почве. Нагрузка от этих сил может стать больше нагрузки от строения, и она вызовет растяжение в верхних частях фундамента, которое повлечет за собой разрушение его структурной целостности.
Читайте также: Правила расчета арматуры для ленточного фундаментаПри неправильном армировании ленточного фундамента может произойти его разрушение, что повлечет за собой разрушение стен и всей постройки.
Виды материала
В России для армирования монолитного ленточного фундамента применяется арматура класса А-ІІІ (А400) периодического профиля. Эта арматура представлена в виде стальных круглых профилей с парой продольных ребер и поперечными выступами, которые идут по трехзаходной винтовой линии. Периодические профили предназначены для более надежного сцепления бетона с арматурой, что отличается от материала с гладким профилем, которая больше подходит для использования в качестве обвязки (хомута) продольных элементов. Маркировка стальной арматуры А400 обозначает предел текучести этого класса (390 Н/мм2). Но такая арматура сегодня уже считается устаревшей. В начале 90-х годов страны Европы перешли на один класс, которую можно варить, предел текучести которой равен 500 Н/мм2. Применяя класс А500С вместо устаревшего класса А400, вы экономите свыше 10% стали в строительстве.
Схема плитного фундамента под коттедж с использованием армирования.
Арматура периодического профиля класса А-ІІІ производится в отечественном экземпляре с выступами в форме колец и в экземпляре «европрофиль» с выступами в виде серпов. Кольцевой профиль отечественного производства работает на повышение прочности сцепления бетона с арматурой, а профили в форме серпа повышают стойкость к часто повторяющимся нагрузкам. Для армирования ленточного фундамента стоит выбирать кольцевой профиль отечественного производства. Порой можно встретить 4-сторонние серповидные профили, которые объединяют плюсы обоих типов.
Арматуру марки А400 (А-ІІІ) не рекомендуется варить для соединения стержней. Если варить сталь, то есть локально воздействовать высокой температурой, происходит значительное структурное ослабление стали. Эти изменения в стальных стержнях происходят на том участке, который варят, и в прилегающих участках на длину, которая равняется четырем диаметрам стержня в обе стороны. Если вы хотите варить соединение между стержнями, то вам следует выбирать специальные, предназначенные для этого классы, которые можно узнать по букве «С» в названии: А400С, А500С. Именно их можно варить для соединения стержней в каркас. Если вы не знаете, арматурой какого именно класса вы располагаете, но вам необходимо варить место соединения продольных стержней, то арматуру предварительно необходимо нагреть до 200 градусов по Цельсию, чтобы свести к минимуму потери стальной прочности. Длина сварного шва как минимум должна быть равной 10 диаметрам одного стержня свариваемой арматуры (45-55% длины стержня).
Читайте также: Монтаж арматуры в ленточном фундаментеСварка сетки
Варить отдельные стержни сетки железобетонного фундамента можно двумя видами контактной электрической сварки: стыковой и точечной.
Точечная контактная сварка основывается на использовании тепла, которое выделяется в местах контакта стержней во время пропускания электрического тока, чтобы разогреть металл на этих участках до температуры плавления. Осаживая разогретые стержни друг к другу, получается их надежное соединение. Контактной точечной сваркой можно варить узлы каркасов и сеток, которые представляют собой два или три пересекающихся стержня под углами 60 и 90 градусов.
Вязка прутьев
Схема конструкции фундамента.
Также требуется гнуть арматуру для изготовления соединительных элементов, которые работают на растяжение (лапка или стандартный крюк) и для армирования примыканий и углов. Некоторые строители производят армирование примыканий лент и углов ленточного фундамента, используя перекрестия стержневой арматуры. Этот метод является очень грубым нарушением типовых схем армирования примыканий и углов, которые ослабляют конструкцию. Такой способ может повлечь за собой расслоение бетона.
Класс А-ІІІ гнется в холодном состоянии на прямой угол по диаметру изгиба без потерей прочности. Если гнуть арматуру на 180 градусов, то прочность снизится на 10%. Сегодня работает минимум два очень распространенных и недопустимых способа гибки стержней. Недобросовестные рабочие, не желающие выполнять лишнюю работу, или надпиливают точку, где будет производиться гибка стержня, с помощью угловой отрезной машинки, или греют место сгиба паяльной лампой (автогеном или же на костре). Ясно, что оба приема в разы ослабляют стержни, что может повлечь разрушение их целостности под влиянием нагрузок. Запомните, что все типы должны гнуться в холодном состоянии, если другое не указано проектировщиком.
Схема расчета арматуры для фундамента.
Арматура А-ІІІ (А400) применяется для поперечного и продольного армирования фундамента. Для дополнительного (вспомогательного) поперечного армирования (хомуты) можно также использовать стержневую гладкую горячекатаную арматуру класса А-І (А240) или А-ІІ.
Еще для армирования фундамента можно применять конструктивную арматуру, которая монтируется для восприятия непредвиденных усилий (к примеру, усилия от температурных деформаций или усадки бетона). Следует по возможности устанавливать арматуру пространственными или укрупненными заранее подготовленными элементами, сокращая при этом объем использования отдельных стержней. С бетонной подушки (подготовки) на месте монтажа стержней должны удаляться грязь, пыль, мусор, лед и снег.
Поверхность
Стержни необходимо обезжиривать, очищать от всех неметаллических покрытий посредством металлической щетки. Допускается наличие на арматуре эпоксидного покрытия. Оно в разы снижает сцепление с поверхностью бетона, но также повышает стойкость к коррозионному процессу.
Разрешается наличие на стержнях арматуры неотслаивающейся ржавчины. Кстати, обыкновенная неотслаивающаяся ржавчина даже усиливает прочность сцепления бетонной поверхности с арматурой.
Page 2
- Армирование
- Виды
- Изготовление
- Инструменты
- Монтаж
- Расчёт
- Ремонт
1pobetonu.ru
Арматурная сталь
Основными показателями свойств арматурной стали являются:
- Предел текучести (физический) σу, МПа.
- Для сталей, не имеющих физического предела текучести, определяется предел текучести (условный) σ0,2, МПа — напряжение, при котором остаточное удлинение достигает 0,2% от длины участка образца. Определяют его тогда, когда при растяжении образца не обнаруживается ярко выраженного предела текучести (твердые стали).
- Временное сопротивление (предел прочности) σи, МПа.
- Относительное удлинение после разрыва ε — процентное отношение длины образца после разрыва к его первоначальной длине.
Проводя испытание образца, нагрузку на него увеличивают постепенно, ступенями. Начальную ступень нагружения следует принимать 5-10% от ожидаемой максимальной нагрузки. Каждая ступень должна составлять не более 20% от нормативной нагрузки. В конце каждой ступени увеличение нагрузки на образец приостанавливают. Под действием этой нагрузки образец находится не менее 10 мин. Доведя нагрузку до нормативного значения, образец выдерживается 30 мин. Эти выдержки необходимы для выяснения закономерности приращения перемещений и деформаций.
После достижения нагрузкой полуторной величины нормативного значения, дальнейшее увеличение ведут ступенями вдвое меньшими, давая после каждой ступени выдержку не менее 15 мин. Такой порядок дает возможность более точно установить величину предельной (разрушающей) нагрузки.
Деформации рекомендуется замерять приборами до достижения нагрузкой величины не более чем 1,25 от нормативной величины. После этого приборы снимаются. Это делается с целью избежания порчи приборов.
Начальная расчетная длина цилиндрических образцов из необработанной арматурной стали назначается равной десяти начальным (до испытания) диаметрам арматурного стержня.
Измерение начальной и конечной (длина расчетной части после разрыва образца) расчетных длин, а также диаметра необработанного образца производится с точностью 0,1 мм. До появления деформации образца перемещение подвижного захвата происходит без нарастания или с небольшим увеличением нагрузки, которая необходима для устранения зазора как в механизме машины, так и между образцами и захватами. Поэтому на диаграмме в самом начале испытания появляется сначала горизонтальный, а затем криволинейный участок. При начальной нагрузке, составляющей 10% от разрывного усилия, на образец наносят две риски. Расстояние между рисками является начальной расчетной длиной образца.
В продолжение всего испытания ведется наблюдение за поведением образца по диаграмме, вычерчиваемой записывающим прибором разрывной машины.
По оси ординат диаграммы откладываются напряжения σ, а по оси абсцисс относительные деформации образца ε, представляющие отношение удлинения образца к его первоначальной длине (рис. ниже). Криволинейный участок в начале диаграммы рассматривать не следует, поэтому продолжаем прямолинейный отрезок диаграммы до оси абсцисс и получаем точку О — начало диаграммы.
На диаграмме (рис. ниже) можно выделить три участка работы стали: 1 — участок упругой работы; 2 — участок пластической работы; 3 — участок упруго-пластической работы. В большинстве простейших расчетов считается, что сталь работает в пределах первого участка упруго, т. е. напряжения в элементах ограничиваются пределом текучести — σу. Соответственно, нормативные и расчетные сопротивления, необходимые для расчета конструкций, принимаются по пределу текучести.
Диаграмма растяжения мягкой стали
Прямолинейный участок 1 диаграммы (деформации растут пропорционально напряжениям о) переходит в кривую (небольшой отрезок между участками 1 и 2), т. е. деформации растут быстрее увеличения нагрузки, а от начальной точки («критической точки») участка 2 деформации увеличиваются без увеличения нагрузки (материал «течет»).
При напряжениях, близких к временному сопротивлению σи, продольные и поперечные деформации концентрируются в наиболее слабом месте, и в образце образуется шейка. Площадь поперечного сечения в шейке интенсивно уменьшается, что приводит к увеличению напряжений в месте сужения. В связи с этим, несмотря на то что нагрузка на образец снижается, в месте образования шейки нарушаются силы межатомного сцепления и происходит разрыв.
Напряжения (рис. выше) получают путем деления нагрузки на первоначальную площадь сечения. Истинная диаграмма растяжения (при напряжениях с учетом уменьшения площади сечения) не имеет нисходящей части.
При проведении опытов на растяжение площадь поперечного сечения стержней периодического профиля с необработанной поверхностью можно определить по формуле
A0 = G/γstL = G/0,0785L
где G — вес образца стержня периодического профиля, Н; L —длина образца, см.
Площадка текучести свойственна сталям с содержанием углерода 0,1-0,3%. При меньшем значении углерода перлитовых включений мало, отчего отсутствует сдерживающее влияние на развитие сдвигов в зернах феррита.
В высокопрочных сталях при большом числе включений развитие сдвигов полностью блокируется и явно выраженная площадка текучести отсутствует, т. е. материал не имеет физического предела текучести, необходимо определить величину условного предела текучести как напряжения, соответствующего остаточному удлинению Δε0,2 = 0,2% ε, где ε — удлинение образца.
Условный предел текучести для такой стержневой арматуры σ0,2 устанавливается по остаточному удлинению, равному 0,2%, и должен составлять не менее 80% браковочного значения предела прочности для каждого вида арматуры (рис. ниже). Откладывая величину Δε0,2 в соответствующем масштабе на оси абсцисс диаграммы растяжения, проводим наклонную линию ВС параллельно ОА до пересечения с кривой растяжения. Точка В определяет нагрузку σ0,2, соответствующую условному пределу текучести.
Диаграмма растяжения стали, не имеющей площадки текучести
За площадкой текучести кривая (рис. выше) опять идет вверх, нагрузка снова начинает расти и в самой верхней точке достигает своего наибольшего значения (σмакс — разрушающая нагрузка), после чего вновь уменьшается до момента разрыва образца.
Относительное удлинение вычисляется по формуле
ε = Lk-L / L = 100%
где Lk — длина образца после разрыва (конечная длина), мм; L — расчетная начальная длина образца, мм.
Чтобы измерить длину образца после разрыва, обе его части складываются по длине и штангенциркулем измеряют расстояние между рисками, соответствующими принятой расчетной длине.
Помимо основных характеристик σy, σu, ε, определяемых по результатам испытаний на растяжение, важными показателями арматурных сталей являются отношения предела текучести к временному сопротивлению и предела пропорциональности к пределу текучести.
Отношение σy/σu характеризует резерв прочности стали. В арматурных сталях обычной и повышенной прочности это отношение близко к 0,6, что свидетельствует о достаточно большом резерве работы материала и позволяет использовать в широких пределах пластические свойства стали. Для высокопрочных арматурных сталей предел текучести близок к временному сопротивлению σ0,2/σu=О,8-0,9, что ограничивает использование работы материала в упругопластической стадии.
Модуль упругости арматурной стали Es. Так как арматурная сталь работает в упругопластических условиях, расчетные значения модуля деформации (упругости) ее принимают равными их нормативным значениям или в,зависимости от класса арматурной стали по таблице ниже.
Модули упругости арматурной стали, МПа
Класс арматуры |
А240, А300, А400, А500, А600, А800, А1000, В500, Bp 1200, Вр1300, Вр1400, Bp1500 |
К1400, К1500 |
Модуль упругости Es |
200 000 |
180 000 |
Физико-механические свойства арматуры зависят от химического состава сталей, способа производства и обработки.
Основные механические свойства арматурных сталей характеризуются диаграммой «напряжения-деформации», получаемой при испытании образцов на растяжение. Все арматурные стали по характеру диаграмм «σ-ε» можно подразделить на следующие виды:
- стали с явно выраженной площадкой текучести (мягкие стали);
- стали с неявно выраженной площадкой текучести (низколегированные, термически упрочненные стали);
- стали с линейной зависимостью «σ-ε» почти до разрыва (высокопрочная проволока).
В зависимости от типа конструкций и условий эксплуатации учитываются и другие свойства арматурных сталей: свариваемость, реологические свойства, динамическое упрочнение и др.
Свариваемость — это способность арматуры к надежному соединению с помощью электросварки без трещин, каверн и других дефектов в зоне сварного шва. Хорошей свариваемостью обладают горячекатаные, малоуглеродистые и низколегированные стали.
Реологические свойства характеризуются ползучестью и релаксацией.
Ползучесть проявляется при больших напряжениях и высоких температурах.
Релаксация зависит от химического состава стали, технологии изготовления, напряжения, температуры и др.
Усталостное разрушение наблюдается при действии многократно повторяющейся нагрузки при пониженном сопротивлении и носит хрупкий характер.
Динамическое упрочнение имеет место при действии кратковременных (t < 1 с) динамических нагрузок.
ros-pipe.ru
Смотрите также
- Чрезвертельный перелом бедра у пожилых людей вставать на ногу когда
- Ушиб сухожилия на ноге
- Заморозка от ушибов
- Уход за лежачими больными в домашних условиях с переломом шейки бедра
- Растяжение большого пальца руки
- Причина появления синяков на ногах без ушибов
- Лангетка на палец ноги при переломе
- Импрессионный перелом мыщелка бедренной кости
- Сроки сращения переломов таблица
- Бандаж при переломе плеча
- Ушиб вымени у козы лечение
Новости |
14.11.2018 |
11.01.2019 |