Прочность стали на растяжение
Углеродистые стали
Углеродистая конструкционная сталь. В соответствии с имеющимися стандартами углеродистая конструкционная сталь делится на:
- сталь обыкновенного качества (ГОСТ 380—50)
- сталь качественную (ГОСТ 1050—52).
Сталь обыкновенного качества
Сталь обыкновенного качества согласно ГОСТ 380—50 делится на две группы (А и В).
Стали группы А
Группа А объединяет марки по механическим свойствам, гарантируемым заводом-поставщиком; химический состав стали в этой группе ГОСТ не оговаривается, и завод-поставщик не несет за него ответственности.
Сталь группы А маркируется следующим образом:
-
Ст. 0,
-
Ст. 1,
-
Ст. 2,
-
Ст. 3
-
и т.д. до Ст. 7.
Предел прочности на разрыв у стали:
-
Ст. 0—32—47 кг/мм2,
-
у Ст. 1— 32—40 кг/мм2,
-
у Ст. 2—34—42 кг/мм2.
-
У сталей Ст. 3, Ст. 4, Ст. 5, Ст. 6 и Ст. 7 примерно соответствует цифре, определяющей марку стали (в десятках кг/мм2). Например, у Ст. 6 минимальное значение предела прочности составит около 60 кг/мм2.
Стали группы А обычно используются для изготовления изделий, применяемых без термической обработки:
-
листы,
-
ленты,
-
проволока,
-
балки и т.д.
Стали группы В
Для стали группы В регламентируется химический состав и указывается способ изготовления:
-
М — мартеновская;
-
Б — бессемеровская,
-
Т — томасовская)
В этой группе установлены следующие марки сталей:
-
М Ст. 0,
-
М Ст. 1,
-
М Ст. 2
-
и т.д. до сталей М Ст. 7, Б Ст. 0, Б Ст. 3, Б Ст. 4, Б Ст. 5, Б Ст. 6.
Стали группы В используются для изготовления деталей обыкновенного качества:
-
рельсы,
-
неответственные шестерни,
-
валы,
-
оси и т.п.
Марки и состав мартеновской стали приведены в табл. 3.
Продолжение классификации углеродистой стали читайте в следующей статье.
§
www.conatem.ru
Допустимое сопротивление стали на растяжение сталь 20. Механические свойства металлов
Предел прочности - максимальное напряжение, которому может подвергаться материал до момента его разрушения. Если говорить о данном показателе по отношению к металлам, то здесь он равен соотношению критической нагрузки к площади его поперечного сечения при проведении теста на разрыв. В целом же прочность показывает, какая сила требуется для преодоления и разрыва внутренних связей между молекулами материала.
Каким образом производится испытание на прочность?
Тестирование металлов на прочность выполняется при помощи специализированных механизмов, которые позволяют устанавливать необходимую мощность при испытаниях на разрыв. Состоят такие машины из специального нагружающего элемента, с помощью которого создается необходимое усилие.
Оборудование для испытания металлов на прочность дает возможность производить растяжение тестируемых материалов и устанавливать определенные величины усилия, которое прилагается к образцу. На сегодняшний день существуют гидравлические и механические типы механизмов для испытания материалов.
Виды пределов прочности
Предел прочности является одним из основных свойств материалов. Информация о предельной прочности тех или иных материалов является крайне важной при необходимости определения возможностей их применения в тех или иных промышленных сферах.
Выделяют несколько отдельных пределов прочности материалов:
- при сжатии;
- при изгибе;
- при кручении;
- при растяжении.
Формирование понятия о пределе прочности металлов
О пределе прочности в свое время говорил еще Галилей, который определил, что гранично-допустимый предел сжатия и растяжения материалов зависит от показателя их поперечного сечения. Благодаря исследованиям ученого возникла ранее неизведанная величина - напряжение разрушения.
Современное учение о прочности металлов сформировалось в средине XX века, что было необходимо исходя из потребности в разработке научного подхода для предотвращения возможных разрушений промышленных сооружений и машин во время их эксплуатации. До этого момента при определении прочности материала учитывалась лишь степень его пластичности и упругости и совершенно не учитывалась внутренняя структура.
Предел прочности стали
Сталь является основным сырьевым материалом в большинстве промышленных сфер. Широко применяется она в строительстве. Именно поэтому для выполнения конкретных задач очень важно заблаговременно подбирать высококачественный, действительно подходящий тип стали. От правильного расчета предела прочности определенной марки стали напрямую зависит результат и качество выполненных работ.
Как пример можно привести несколько значений предельных показателей прочности сталей. Данные значения основаны на требованиях государственных стандартов и представляют собой рекомендуемые параметры. Так, для изделий, отлитых из конструкционной нелегированной стали, предусмотрен стандарт ГОСТ 977-88, согласно которому, предельное значение прочности при испытании на растяжение составляет порядка 50-60 кг/мм 2 , что равняется примерно 400-550 МПа. Аналогичная марка стали после прохождения процедуры закалки приобретает значение сопротивления на растяжение более 700 МПа.
Объективный предел прочности стали 45 (или любой другой марки материала, в равной степени как и железа или чугуна, а также остальных сплавов металла) зависит от целого ряда факторов, которые должны определяться исходя из поставленных задач, что ложатся на материал при его применении.
Прочность меди
В обычных условиях комнатной температуры отожженная техническая медь обладает пределом прочности порядка 23 кг/мм 2 . При значительных температурных нагрузках на материал его предельная прочность существенно снижается. На показателях предельной прочности меди отражается наличие в металле всевозможных примесей, которые могут как повышать данный показатель, так и приводить к его снижению.
Прочность алюминия
Отожженная фракция технического алюминия при комнатной температуре отличается пределом прочности до 8 кг/мм 2 . Повышение чистоты материала увеличивает его пластичность, но отражается на снижении прочности. В качестве примера можно взять алюминий, показатель чистоты которого составляет 99,99%. В данном случае предельная прочность материала достигает около 5 кг/мм 2 .
Уменьшение предела прочности алюминиевой тестовой заготовки наблюдается при ее нагревании во время проведения испытаний на растяжение. В свою очередь, снижение температуры металла в пределах от +27 до -260 о С временно повышает исследуемый показатель в 4 раза, а при испытании фракции алюминия высочайшей чистоты - в целых 7 раз. В то же время несколько повысить прочность алюминия можно методом его легирования.
Прочность железа
На сегодняшний день методом промышленной и химической обработки удалось получить нитевидные кристаллы железа с пределом прочности до 13 000 Мпа. Наряду с этим, прочность технического железа, которое широко применяется в самых разнообразных сферах, составляет близко 300 МПа.
Естественно, каждый образец материала при его исследовании на уровень прочности обладает своими дефектами. На практике доказано, что реальная объективная предельная прочность любого металла, независимо от его фракции, меньше по сравнению с данными, полученными в ходе теоретических расчетов. Данную информацию необходимо обязательно принимать во внимание при выборе определенного типа и марки металла для выполнения конкретных задач.
Производство проката подразумевает изготовление огромного количества разновидностей конструкционных сталей. Сооружения во время эксплуатации испытывают сложные нагрузки на растяжение, сжатие, удары, изгиб или действующие одновременно и в комплексе. Для тяжелых и сложных условий работы конструкций, механизмов и сооружений требуется обеспечить долговечность, безопасность и надежность работы, в связи с чем к металлу, как к основному конструкционному материалу, предъявляются повышенные требования.
Главным в расчете конструкций является стремление уменьшить сечение стальных конструкций современных узлов для снижения их массы и экономного расходования материала без уменьшения несущей способности сооружения. В зависимости от условий работы, требования к сталям изменяются, но существуют стандартные, которые являются важными и применяются в процессе расчетных работ. Конструкционная сталь должна соответствовать высоким прочностным характеристикам при достаточной пластичности материала.
Предел текучести – немаловажная условная физическая величина, непосредственно используемая в расчетных формулах. Применение этого показателя в качестве основы при расчете конструкции на прочность является обоснованным, так как при эксплуатации в сооружении появляются необратимые изменения линейных размеров, что приводит к разрушению формы изделия и выходу его из строя. Повышение этой характеристики дает возможность уменьшить расчетные сечения материала и вес металлических конструкций и позволяет повысить рабочие нагрузки.
Пределом текучести металлов называют характеристику стали , показывающую критическое напряжение, после которого продолжается деформация материала без повышения нагрузки. Это важный показатель измеряется в Паскалях (Па) или МегаПаскалях (МПа), и позволяют рассчитывать предел допустимых напряжений для пластичных сталей.
После того как материал преодолеет предел текучести, в нем происходят необратимые деформации, изменяется структура кристаллической решетки, происходят пластические изменения. Если растягивающее значение силы увеличивается, то после прохождения площадки текучести продолжают увеличиваться деформации сталей.
Часто понятие текучести сталей называют напряжением, при котором начинается необратимая деформация, не определяя различия с пределом упругости. Но в реальных условиях значение показателя предела текучести превышает предел упругости на величину около 5%.
Общие сведения и характеристики сталей
Сталь относят к ковкому деформируемому сплаву на основе железа с углеродом и добавками других элементов. Выплавляют материал из чугунных смесей с металлическим ломом в мартеновских, электрических и кислородных конверторных печах.
Сформировавшаяся кристаллическая решетка металла зависит от количества содержащегося в них углерода и определяется по структурной диаграмме в соответствии с процессами в этом сплаве. Например, решетка стали, в которой содержится до 0,06% углерода, имеет зернистую структуру и является ферритом в чистом виде. Прочность таких металлов небольшая, но материал обладает высоким пределом ударной вязкости и текучести. Структуры сталей в состоянии равновесия подразделяются:
- ферритная;
- перлитно-ферритная;
- цементитно-ферритная;
- цементитно-перлитная;
- перлитная;
Влияние содержание углерода на свойства сталей
Изменения главных составляющих цементита и феррита определяются свойствами первого по закону аддитивности. Увеличение процентной добавки углерода до 1,2% позволяет повысить прочность, твердость, порог хладоемкости на 20ºС и предел текучести. Повышение содержания углерода изменяет физические свойства материала, что иногда приводит к ухудшению технических характеристик, таких как способность к свариванию, деформации при штамповках. Отличным свариванием в конструкциях обладают низкоуглеродистые сплавы.
Добавки марганца и кремния
Марганец вводят в состав сплава в качестве технологической добавки для увеличения степени раскисления и уменьшения вредного воздействия серных примесей. В сталях он присутствует в виде твердых составляющих в количестве не более 0,8% и не оказывает существенного влияния на свойства металла.
Кремний действует в составе сплава аналогичным образом, добавляется при процессе раскисления в количестве не больше 0,38%. Для возможности соединения деталей сваркой содержание кремния не должно быть больше 0,24%. На свойства сталей кремний в составе сплава не влияет.
Пределом содержания серы в сплаве является порог в 0,06% , она содержится в виде хрупких сульфитов. Повышенное содержание примеси существенно ухудшает механические и физические свойства сталей. Это выражается в уменьшении пластичности, предела текучести, ударной вязкости, сопротивления истиранию и коррозии.
Содержание фосфора также ухудшает качественные показатели металлических сплавов, предел текучести после увеличения фосфора в составе повышается, но снижается вязкость и пластичность. Стандартное содержание примеси в сплаве регламентируется интервалом от 0,025 до 0,044%. Наиболее сильно фосфор ухудшает свойства сталей при одновременном высоком показателе добавок углерода.
Азот и кислород в сплаве
Эти вещества загрязняют сталь неметаллическими примесями и ухудшают ее механические и физические показатели. В частности, это относится к порогу вязкости и выносливости , пластичности и хрупкости. Содержание в сплаве кислорода в размере больше, чем 0,03% вызывает быстрое старение металла, азот увеличивает ломкость и повышает со временем деформационное старение. Содержание азота увеличивает прочность, тем самым понижая предел текучести.
Легирующие добавки в составе сплавов
К легированным относят стали, в которые специально вводятся в определенных сочетаниях элементы для повышения качественных характеристик. Комплексное легирование дает наилучшие результаты. В качестве добавок применяют хром, никель, молибден, вольфрам, ванадий, титан и другие.
Легированием повышают предел текучести и другие технологические свойства, такие как ударная вязкость, сужение и возможность прокаливания, снижение порога деформации и растрескивания.
Чтобы полностью изучить свойства материала и определения предела текучести, пластических деформаций и прочности проводят испытание образцов металла до полного разрушения. Испытание проводят при действии нагрузок следующего вида:
Определение пределов испытательных нагрузок производят в стандартных условиях, с применением специальных машин, которые описаны в правилах Государственных стандартов.
Испытание образца для определения предела текучести
Для этого берут образец цилиндрической формы размером 20 мм, расчетной длиной 10 мм и применяют к нему нагрузку растяжением. Понятие расчетной длины обозначает расстояние между рисками, нанесенными на более длинном образце для возможности захвата. Для проведения испытания определяют зависимость между увеличением растягивающей силы и удлинением испытательного образца .
Все показания испытания автоматически отображаются в виде диаграммы для наглядного сравнения. Ее называют диаграммой условного растяжения или условного напряжения, график зависит от первоначального сечения образца и первоначальной его длины. Вначале увеличение силы приводит к пропорциональному удлинению образца. Такое положение действует до предела пропорциональности.
После достижения этого порога график становится криволинейным и обозначает непропорциональное увеличение длины при равномерном повышении нагрузки. Дальше следует определение предела текучести. До тех пор, пока напряжения в образце не превосходят этого показателя, то материал с прекращением нагрузки может вернуться в первоначальное состояние относительно размеров и формы. На практике испытательного процесса разница между этими пределами невелика и не стоит особого внимания.
Предел текучести
Если продолжать увеличивать нагрузку, то наступает такой момент испытания, когда изменение формы и размеров продолжается без увеличения силы. На диаграмме это показывается горизонтальной прямой (площадкой) текучести. Фиксируется максимальное напряжение, при котором увеличивается деформация, после прекращения наращивания нагрузки. Этот показатель называется пределом текучести. Для стали Ст. 3 предел текучести от 2450 кг на квадратный сантиметр.
Условный предел текучести
Многие металлы при испытании дают диаграмму, на которой площадка текучести отсутствует или плохо выражена, для них применяется понятие условного предела текучести. Это понятие определяет напряжение, которое вызывает остаточное изменение или деформацию в пределе 0,2% . Металлами, к которым применяется понятие условного предела текучести, служат легированные и высокоуглеродистые стали, бронза, дюралюминий и другие. Чем пластичнее сталь, тем больше показание остаточных деформаций. К ним относят алюминий, латунь, медь и низкоуглеродистые стали.
Испытания стальных образцов показывает, что текучесть металла вызывает значительные сдвиги кристаллов в решетке, и характеризуется появлением на поверхности линий, направленные к центральной оси цилиндра.
Предел прочности
После изменения на некоторую величину происходит переход образца в новую фазу, когда после преодоления предела текучести, металл снова может сопротивляться растяжению . Это характеризуется упрочнением, и линия диаграммы снова поднимается, хотя повышение происходит в более пологом проявлении. Появляется временное сопротивление постоянной нагрузке.
После достижения максимального напряжения (предела прочности) на образце появляется участок резкого сужения, так называемой шейки, характеризующейся уменьшением площади поперечного сечения, и образец рвется в самом тонком месте. При этом значение напряжения резко падает, уменьшается и величина силы.
Сталь Ст.3 характеризуется пределом прочности 4000–5000 кГ/см2. Для высокопрочных металлов такой показатель достигает предела 17500 кГ/см3 этот.
Пластичность материала
Характеризуется двумя показателями:
- остаточное относительное удлинение;
- остаточное сужение при разрыве.
Для определения первого показателя измеряют общую длину растянутого образца после разрыва. Чтобы это сделать, складывают две половинки друг с другом. Измерив длину, высчитывают процентное отношение к первоначальной длине. Прочные сплавы менее подвержены пластичности и показатель относительного удлинения снижается до 63 эта11%.
Вторая характеристика рассчитывается после измерения наиболее узкой части разрыва и высчитывается в процентном отношении к первоначальной площади среза образца.
Свойством, противоположным пластичности, является показатель хрупкости материала . Хрупкими металлами считают чугун, инструментальную сталь. Деление сталей на хрупкие и пластичные производится условно, так как для определения этого показателя имеет значение условия работы или испытания, скорость повышения нагрузки, температура окружающей среды.
Некоторые материалы в разных условиях ведут себя совсем не как хрупкие. Например, чугун, расположенный так, что зажат со всех сторон, не разрушается даже при больших нагрузках и возникающих внутри напряжениях. Сталь с проточками характеризуется повышенной хрупкостью. Отсюда вывод, что гораздо целесообразнее испытывать не пределы хрупкости, а определять состояние материала, как пластичное или хрупкое.
Испытания сталей для определения физических и технических свойств делаются с целью получить достоверные данные для произведения работ при строительстве и создания конструкций в хозяйстве.
Когда на металлический образец действует сила или система сил, он реагирует на это, изменяя свою форму (деформируется). Различные характеристики, которыми определяются поведение и конечное состояние металлического образца в зависимости от вида и интенсивности сил, называются механическими свойствами металла.
Интенсивность силы, действующей на образец, называется напряжением и измеряется как полная сила, отнесенная к площади, на которую она действует. Под деформацией понимается относительное изменение размеров образца, вызванное приложенными напряжениями.
Упругая и пластическая деформация, разрушение
Если напряжение, приложенное к металлическому образцу, не слишком велико, то его деформация оказывается упругой – стоит снять напряжение, как его форма восстанавливается. Некоторые металлические конструкции намеренно проектируют так, чтобы они упруго деформировались. Так, от пружин обычно требуется довольно большая упругая деформация. В других случаях упругую деформацию сводят к минимуму. Мосты, балки, механизмы, приборы делают по возможности более жесткими. Упругая деформация металлического образца пропорциональна силе или сумме сил, действующих на него. Это выражается законом Гука, согласно которому напряжение равно упругой деформации, умноженной на постоянный коэффициент пропорциональности, называемый модулем упругости: s = ∆ Y , где s – напряжение, ∆ – упругая деформация, а Y – модуль упругости (модуль Юнга). Модули упругости ряда металлов представлены в табл. 1.
Таблица 1
Металл |
Вольфрам |
Железо (сталь) |
Медь |
Алюминий |
Магний |
Свинец |
Модуль Юнга, 10 5 МПа |
0,70 |
0,45 |
0,18 |
Пользуясь данными этой таблицы, можно вычислить, например, силу, необходимую для того, чтобы растянуть стальной стержень квадратного поперечного сечения со стороной 1 см на 0,1% его длины:
F = 200 000 МПа х 1 см 2 х 0,001 = 20 000 Н (= 20 кН)
Когда к металлическому образцу прикладываются напряжения, превышающие его предел упругости, они вызывают пластическую (необратимую) деформацию, приводящую к необратимому изменению его формы. Более высокие напряжения могут вызвать разрушение материала.
Важнейшим критерием при выборе металлического материала, от которого требуется высокая упругость, является предел текучести. У самых лучших пружинных сталей практически такой же модуль упругости, как и у самых дешевых строительных, но пружинные стали способны выдерживать гораздо большие напряжения, а следовательно, и гораздо большие упругие деформации без пластической деформации, поскольку у них выше предел текучести.
Пластические свойства металлического материала (в отличие от упругих) можно изменять путем сплавления и термообработки. Так, предел текучести железа подобными методами можно повысить в 50 раз. Чистое железо переходит в состояние текучести уже при напряжениях порядка 40 МПа, тогда как предел текучести сталей, содержащих 0,5% углерода и несколько процентов хрома и никеля, после нагревания до 950 С 0 и закалки может достигать 2000 МПа.
Когда металлический материал нагружен с превышением предела текучести, он продолжает деформироваться пластически, но в процессе деформирования становится более твердым, так что для дальнейшего увеличения деформации требуется все больше повышать напряжение. Такое явление называется деформационным или механическим упрочнением (а также наклепом). Его можно продемонстрировать, скручивая или многократно перегибая металлическую проволоку. Деформационное упрочнение металлических изделий часто осуществляется на заводах. Листовую латунь, медную проволоку, алюминиевые стержни можно холодной прокаткой или холодным волочением довести до уровня твердости, который требуется от окончательной продукции.
Бернштейн М.Л., Займовский В.А. Механические свойства металлов . М., 1979 Уайэтт О.Г., Дью-Хьюз Д. Металлы, керамики, полимеры . М., 1979 Павлов П.А. Механические состояния и прочность материалов . Л., 1980 Соболев Н.Д., Богданович К.П. Механические свойства материалов и основы физики прочности . М., 1985 Жуковец И.И. Механические испытания металлов . М., 1986 Бобылев А.В. Механические и технологические свойства металлов . М., 1987
Пределом текучести называют напряжение, соответствующее остаточному значению удлинения после снятия нагрузки. Определение этой величины необходимо для выбора металлов, используемых в производстве. Если не учесть рассматриваемый параметр, то это может привести к интенсивному процессу развития деформации в неправильно выбранном материале. Очень важно учитывать пределы текучести при конструировании различных металлических конструкций.
Физическая характеристика
Пределы текучести относятся к показателям прочности. Они представляют собой макропластическую деформацию с довольно малым упрочнением. Физически этот параметр можно представить как характеристику материала, а именно: напряжение, которое отвечает нижнему значению площадки текучести в графике (диаграмме) растяжения материалов. Это же можно представить в виде формулы: σ Т =P Т /F 0 , где P Т означает нагрузку предела текучести, а F 0 соответствует первоначальной площади поперечного сечения рассматриваемого образца. ПТ устанавливает так называемую границу между упруго-пластической и упругой зонами деформирования материала. Даже незначительное увеличение ПТ) вызовет существенную деформацию. Пределы текучести металлов принято измерять в кг/мм 2 либо Н/м 2 . На величину данного параметра оказывают влияние разные факторы, например, режим термообработки, толщина образца, наличие легирующих элементов и примесей, тип, микроструктура и дефекты кристаллической решетки и прочее. Предел текучести значительно меняется при изменении температуры. Рассмотрим пример практического значения данного параметра.
Предел текучести труб
Наиболее наглядным является влияние данной величины при строительстве трубопроводов систем высокого давления. В таких конструкциях должна использоваться специальная сталь, у которой достаточно большие пределы текучести, а также минимальные показатели разрыва между данным параметром и Чем больше у стали предел, тем, естественно, более высоким должен быть показатель допустимой величины рабочего напряжения. Данный факт оказывает прямое влияние на значение прочности стали, и соответственно, всей конструкции в целом. В связи с тем что параметр допустимой расчетной величины системы напряжений оказывает непосредственное влияние на необходимое значение толщины стен в используемых трубах, то важно максимально точно рассчитывать характеристики прочности стали, которая будет использоваться при изготовлении труб. Одним из наиболее аутентичных методов определения данных параметров является проведение исследования на разрывном образце. Во всех случаях требуется учитывать разницу значений рассматриваемого показателя, с одной стороны, и допустимыми значениями напряжений - с другой.
Кроме того, следует знать, что предел текучести металла всегда устанавливается в результате проведения детальных многоразовых замеров. А вот систему допустимых напряжений в подавляющем большинстве принимают исходя из нормативов или вообще в результате проведенных технических условий, а также опираясь на личный опыт производителя. В системах магистральных трубопроводов весь нормативный сборник описан в СНиП II-45—75. Итак, установка коэффициента запаса прочности - довольно сложная и весьма важная практическая задача. Корректное определение этого параметра всецело зависит от точности рассчитанных величин напряжения, нагрузки, а также предела текучести материала.
При выборе теплоизоляции систем трубопроводов также опираются на данный показатель. Это связано с тем, что эти материалы непосредственно вступают в контакт с металлической основой трубы, и, соответственно, могут принимать участие в электрохимических процессах, пагубно влияющих на состояние трубопровода.
Растяжение материалов
Предел текучести при растяжении определяет, при какой величине напряжение останется неизменным либо снизится, несмотря на удлинение. То есть данный параметр достигнет критической отметки тогда, когда произойдет переход от упругой к пластической области деформации материала. Получается, что предел текучести можно определить путем проведения тестирования стержня.
Расчет ПТ
В сопротивлении материалов пределом текучести является напряжение, при котором начинается развиваться Давайте рассмотрим, каким образом производится расчет этой величины. В опытах, проводимых с цилиндрическими образцами, определяют значение нормального напряжения в поперечном сечении в момент возникновения необратимой деформации. Таким же методом в опытах с кручением трубчатых образцов производят определение предела текучести при сдвиге. Для большинства материалов этот показатель определяется формулой σ Т =τ s √3. В некоторых экземплярах непрерывное удлинение цилиндрического образца на диаграмме зависимости нормальных напряжений от относительного удлинения приводит к обнаружению так называемого зуба текучести, то есть резкого снижения напряжения перед образованием пластической деформации.
Более того, дальнейший рост такого искажения до определенного значения происходит при постоянном напряжении, которое называют физическим ПТ. Если площадка текучести (горизонтальный участок графика) имеет большую протяженность, то такой материал называют идеально-пластическим. Если диаграмма не имеет площадки, то образцы называют упрочняющимися. В таком случае невозможно точно указать значение, при котором возникнет пластическая деформация.
Что такое условный предел текучести?
Давайте разберемся, что же это за параметр. В тех случаях, когда диаграмма напряжений не имеет выраженных площадок, требуется определять условный ПТ. Итак, это значение напряжения, при котором относительная остаточная деформация равна 0,2 процента. Для его вычисления на диаграмме напряжений по оси определения ε необходимо отложить величину, равную 0,2. От этой точки проводится начальному участку. В результате точка пересечения прямой с линией диаграммы определяет значение условного предела текучести для конкретного материала. Также данный параметр называют техническим ПТ. Кроме того, отдельно выделяют условные пределы текучести при кручении и изгибе.
Текучесть расплава
Этот параметр определяет способность расплавленных металлов заполнять линейные формы. Текучесть расплава для металлических сплавов и металлов имеет свой термин в металлургической промышленности - жидкотекучесть. По сути, это величина, обратная Международная система единиц (СИ) выражает текучесть жидкости в Па -1 *с -1 .
Временное сопротивление на разрыв
Давайте рассмотрим, каким образом определяется данная характеристика механических свойств. Прочностью называют способность материала при определенных пределах и условиях воспринимать различные воздействия, не разрушаясь. Механические свойства принято определять при помощи условных диаграмм растяжений. Для испытаний следует использовать стандартные образцы. Приборы для испытаний оснащаются устройством, которое записывает диаграмму. Повышение нагрузок сверх нормы вызывает существенную пластическую деформацию в изделии. Предел текучести и временное сопротивление на разрыв соответствуют наибольшей нагрузке, предшествующей полному разрушению образца. У пластичных материалов деформация сосредотачивается на одном участке, где появляется местное сужение поперечного сечения. Его еще называют шейкой. В результате развития множественных скольжений в материале образуется большая плотность дислокаций, а также возникают так называемые зародышевые несплошности. Вследствие их укрупнений в образце возникают поры. Сливаясь между собой, они образуют трещины, которые распространяются в поперечном направлении к оси растяжения. И в критический момент образец полностью разрушается.
Что представляет собой ПТ для арматуры?
Эти изделия являются неотъемлемой составной частью железобетона, предназначаемые, как правило, для сопротивления растягивающим усилиям. Обычно используют стальную арматуру, но бывают и исключения. Эти изделия должны работать совместно с массой бетона на всех без исключения стадиях загрузки данной конструкции, обладать пластичными и прочными свойствами. А также отвечать всем условиям индустриализации данных видов работ. Механические свойства стали, используемой при изготовлении арматуры, установлены соответствующим ГОСТом и техническими условиями. ГОСТ 5781-61 предусматривает четыре класса данных изделий. Первые три предназначены для обычных конструкций, а также ненапрягаемых стержней у предварительно напряженных системах. Предел текучести арматуры в зависимости от класса изделия может достигать 6000 кг/см 2 . Так, у первого класса этот параметр составляет примерно 500 кг/см 2 , у второго - 3000 кг/см 2 , у третьего 4000 кг/см 2 , а у четвертого - 6000 кг/см 2 .
Предел текучести сталей
Для сортового проката в базовом исполнении ГОСТ 1050-88 предусматривается следующие значения ПТ: марка 20 - 25 кгс/мм 2 , марка 30 - 30 кгс/мм 2 , марка 45 - 36 кгс/мм 2 . Однако для этих же сталей, изготавливаемых по предварительному согласованию потребителя и изготовителя, пределы текучести могут иметь иные значения (тот же ГОСТ). Так, 30 будет иметь ПТ в размере от 30 до 41 кгс/мм 2 , а марки 45 - в пределах 38-50 кгс/мм 2 .
Заключение
При проектировании различных (зданий, мостов и прочих) предел текучести используют в качестве показателя стандарта прочности при проведении расчетов значений допустимых нагрузок соответственно указанному коэффициенту запаса прочности. А вот для сосудов, находящихся под давлением, величину допустимой нагрузки рассчитывают на основе ПТ, а также прочности на разрыв, с учетом спецификации условий эксплуатации.
pro-men.ru
Предел прочности
Быстрый поиск
Определённая пороговая величина для конкретного материала, превышение которой приведёт к разрушению объекта под действием механического напряжения. Основные виды пределов прочности: статический, динамический, на сжатие и на растяжение. Например, предел прочности на растяжение — это граничное значение постоянного (статический предел) или переменного (динамический предел) механического напряжения, превышение которого разорвет (или неприемлемо деформирует) изделие. Единица измерения — Паскаль [Па], Н/мм ² = [МПа].
Предел текучести (σт)
Величина механического напряжения, при которой деформация продолжает увеличиваться без увеличения нагрузки; служит для расчётов допустимых напряжений пластичных материалов.
После перехода предела текучести в структуре металла наблюдаются необратимые изменения: кристаллическая решетка перестраивается, появляются значительные пластические деформации. Вместе с тем происходит самоупрочнение металла и после площадки текучести деформация возрастает при увеличении растягивающей силы.
Нередко этот параметр определяют как «напряжение, при котором начинает развиваться пластическая деформация» [1], таким образом, отождествляя пределы текучести и упругости. Однако следует понимать, что это два разных параметра. Значения предела текучести превышают предел упругости ориентировочно на 5%.
Предел выносливости или предел усталости (σR)
Способность материала воспринимать нагрузки, вызывающие циклические напряжения. Этот прочностной параметр определяют как максимальное напряжение в цикле, при котором не происходит усталостного разрушения изделия после неопределенно большого количества циклических нагружений (базовое число циклов для стали Nb = 10 7). Коэффициент R (σR) принимается равным коэффициенту асимметрии цикла. Поэтому предел выносливости материала в случае симметричных циклов нагружения обозначают как σ-1, а в случае пульсационных — как σ0.
Отметим, что усталостные испытания изделий очень продолжительны и трудоёмки, они включают анализ больших объёмов экспериментальных данных при произвольном количестве циклов и существенном разбросе значений. Поэтому чаще всего используют специальные эмпирические формулы, связывающие предел выносливости с другими прочностными параметрами материала. Наиболее удобным параметром при этом считается предел прочности.
Для сталей предел выносливости при изгибе как правило составляет половину от предела прочности: Для высокопрочных сталей можно принять:
Для обычных сталей при кручении в условиях циклически изменяющихся напряжений можно принять:
Приведённые выше соотношения стоит применять осмотрительно, потому что они получены при конкретных режимах нагружения, т.е. при изгибе и при кручении. Однако, при испытании на растяжение-сжатие предел выносливости становится примерно на 10—20% меньше, чем при изгибе.
Предел пропорциональности (σ)
Максимальная величина напряжения для конкретного материала, при которой ещё действует закон Гука, т.е. деформация тела прямо пропорционально зависит от прикладываемой нагрузки (силы). Обратите внимание, что для множества материалов достижение (но не превышение!) предела упругости приводит к обратимым (упругим) деформациям, которые, впрочем, уже не прямо пропорциональны напряжениям. При этом такие деформации могут несколько «запаздывать» относительно роста или снижения нагрузки.
Диаграмма деформации металлического образца при растяжении в координатах удлинение (Є) — напряжение (σ).
1:Предел абсолютной упругости.
2:Предел пропорциональности.
3:Предел упругости.
4:Предел текучести. (σ 0.2)
www.smalley.ru
Механические свойства стали и алюминиевых сплавов. Прочность и деформативность
Свойства и качество сталей оценивают рядом технических характеристик, основными из которых являются механические свойства и химический состав, регламентируемые соответствующими ГОСТами и ТУ.
К основным показателям механических свойств относят: прочность, упругость и пластичность, склонность к хрупкому разрушению.
Прочность — сопротивляемость внешним силовым воздействиям.
Упругость —свойство восстанавливать первоначальное состояние после снятия нагрузки.
Пластичность — свойство получать остаточные деформации после снятия нагрузки.
Хрупкость — разрушение материала при малых деформациях в пределах упругой работы.
Прочность, упругость и пластичность стали определяют испытанием на растяжение специальных образцов. Полученная при этом диаграмма показывает зависимость между напряжениями и деформацией.
Важнейшими показателями механических свойств стали являются предел текучести — (Ry), временное сопротивление (предел прочности — Ru) и относительное удлинение (ε). Предел текучести и временное сопротивление характеризуют прочность стали, относительное удлинение — пластические свойства стали.
1 — чистый алюминий; 2 — АМгб; 3 — ABT1; 4 — Д16Т; 5 — сталь марки ВСтЗ
До достижения стандартным образцом из малоуглеродистой стали напряжений, равных пределу текучести, материал работает практически упруго. Затем в нем развиваются большие деформации при постоянном напряжении. В результате образуется площадка текучести (горизонтальный участок диаграммы на рисунке выше). Когда относительное удлинение достигает 2,5%, текучесть материала прекращается, и он снова может оказывать сопротивление деформациям. Эту стадию работы стали называют cmadueit самоупрочнения, в ней материал работает как упругопластический. У других сталей переход в пластическую стадию происходит постепенно (нет площадки текучести). Пределом текучести для них считают напряжение, при котором остаточная деформация достигает 0,2%, т. е. σу = σ0,2.
Предельную сопротивляемость материала, характеризующую его прочность, определяют наибольшим условным напряжением в процессе разрушения (отношение разрушающей нагрузки к первоначальной площади сечения образца). Это напряжение называют временным сопротивлением (пределом прочности).
Наибольшее напряжение в материале, при котором начинается отклонение от прямолинейной зависимости между напряжениями и деформациями, называют пределам пропорциональности σеt.
Склонность стали к переходу в хрупкое состояние, ее чувствительность к различным повреждениям определяют испытаниями на ударную вязкость.
Механические характеристики стали зависят от температуры, при которой они работают. При нагревании стали до t = 250 °С свойства ее меняются слабо, однако при дальнейшем повышении температуры сталь становится хрупкой. Отрицательные температуры повышают хрупкость стали, что особенно важно учитывать при строительстве в районах Крайнего Севера. Малоуглеродистые стали становятся хрупкими при температурах ниже минус 45 °С, низколегированные — при температурах ниже минус 60 °С.
Химический состав стали. Такой состав характеризуется процентным содержанием в ней различных добавок и примесей. Углерод повышает предел текучести и прочности стали, однако снижает пластичность и свариваемость. В связи с этим в строительстве применяют только малоуглеродистые стали. Специальное введение в сталь различных примесей (легирующих добавок) улучшает некоторые свойства стали.
Кремний (обозначается буквой С) раскисляет сталь, поэтому его количество возрастает от кипящей к спокойной стали. Он увеличивает прочность стали, однако несколько ухудшает свариваемость, стойкость против коррозии и значительно снижает ударную вязкость. Вредное влияние кремния компенсируется повышенным содержанием марганца. Марганец (Г) — увеличивает прочность стали, незначительно снижая ее пластичность. Медь (Д) — несколько повышает прочность стали и увеличивает стойкость ее против коррозии, но способствует старению стали. Алюминий (Ю) —хорошо раскисляет сталь, нейтрализует вредное влияние фосфора, повышает ударную вязкость. Значительно повышает механические свойства введение в сталь таких легирующих добавок, как никель (Н), хром (X), ванадий (Ф), вольфрам (В) и др. Однако применение этих добавок в сталях, используемых в инженерных конструкциях, ограничивается их дефицитностью и высокой стоимостью.
Некоторые примеси являются вредными для сталей. Так, фосфор резко уменьшает пластичность и ударную вязкость стали, делает ее хрупкой при низких температурах. Сера несколько снижает прочность стали и, главное, способствует образованию трещин при сварке. Кислород, водород и азот, попадая в расплавленный металл из воздуха, ухудшают структуру стали, увеличивая ее хрупкость.
В зависимости от механических свойств (σu, σу), все стали условно делят на три группы — обычной, повышенной и высокой прочности. Для сталей обычной прочности используют малоуглеродистые стали, для сталей повышенной и высокой прочности — низколегированные и среднелегированные.
В зависимости от предъявляемых требований по испытаниям на ударную вязкость, малоуглеродистая сталь разделена на шесть категорий, для каждой из которых нормируются химический состав, значения временного сопротивления, относительного удлинения и требования к испытанию на холодный загиб.
Для гидротехнических сооружений, мостов и других особо ответственных конструкций предназначены малоуглеродистые стали марки М16С и марки 16Д.
Стали повышенной и высокой прочности (низколегированные и среднелегированные) поставляются по ГОСТам и специальным техническим условиям. Наименование марок легированных сталей в определенной мере отражает их химический состав. Первые две цифры показывают среднее содержание углерода в сотых долях процента, следующие далее буквы русского алфавита обозначают легирующие добавки. Цифра после буквы показывает содержание добавки в процентах с округлением до целых значений. Если количество легирующих добавок 0,3-1%, то цифра не ставится. Содержание добавки менее 0,3% не отмечается. Все стали повышенной и высокой прочности поставляются с гарантией механических свойств и химического состава. В зависимости от нормируемых свойств согласно ГОСТу стали подразделяются на 15 категорий.
Примеры обозначения: сталь 14Г2 имеет среднее содержание углерода 0,14%, марганца (Г) до 2%; сталь 15ХСНД— углерода 0,15%, хрома (X), кремния (С), никеля (Н) и меди (Д) 0,3-1% каждого.
В целях экономии металла прокат из углеродистой стали марок СтЗ, СтЗГСпс и низколегированной стали марок 09Г2,09Г2С и 14Г2 поставляют по 2 группам прочности (например, ВСтЗсп5-1 и ВСтЗсп5-2). Отличаются такие стали различным браковочным уровнем предела текучести и временного сопротивления, и в связи с этим расчетными сопротивлениями. Более высокие расчетные характеристики имеют стали, отнесенные ко второй группе прочности.
Выбор марки стали определяет надежность и стоимость конструкции, удобство изготовления, длительность нормальной ее эксплуатации, количество, объем и стоимость работ по содержанию конструкции, в том числе и по защите от коррозии.
Марку стали, если по условиям эксплуатации конструкций не выдвигается специальных требований, выбирают на основании вариантного проектирования и технико-экономического анализа.
Прочность материала характеризуется небольшим напряжением, при достижении которого начинается процесс разрушения образца. Это напряжение называют временным сопротивлением или пределом прочности.
При увеличении прочности стали заметно уменьшается площадка текучести, а для некоторых сталей характерно полное ее отсутствие. Это свойство снижает надежность стали, увеличивая ее склонность к хрупкому разрушению.
Для растяжения, сжатия и изгиба при работе в упругой стадии расчетные сопротивления Ry, определяют по нормативному значению по формуле:
Ry=Ryn/γm
где Ryn — нормативное значение, МПа; γm — коэффициент надежности по материалу (1,025-1,15).
ros-pipe.ru
Смотрите также
- Диклофенак при растяжении связок голеностопа
- Перелом венечного отростка локтевой кости последствия
- Что такое остеосинтез при переломах
- Прочность болтов на растяжение таблица
- Можно ли бегать при растяжении голеностопа
- Растяжение ноги в районе щиколотки
- Восстановление костей после перелома
- Упражнения для разработки кисти руки после перелома
- Перелом лодыжки со смещением
- Внецентренное растяжение сжатие
- Растяжение или вывих голеностопа
Новости |
14.11.2018 |
11.01.2019 |